首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6313篇
  免费   531篇
  国内免费   1篇
  2023年   64篇
  2022年   74篇
  2021年   203篇
  2020年   156篇
  2019年   191篇
  2018年   269篇
  2017年   269篇
  2016年   276篇
  2015年   398篇
  2014年   365篇
  2013年   565篇
  2012年   595篇
  2011年   581篇
  2010年   427篇
  2009年   314篇
  2008年   330篇
  2007年   246篇
  2006年   225篇
  2005年   210篇
  2004年   173篇
  2003年   143篇
  2002年   129篇
  2001年   72篇
  2000年   56篇
  1999年   61篇
  1998年   38篇
  1997年   22篇
  1996年   18篇
  1995年   32篇
  1994年   18篇
  1993年   22篇
  1992年   31篇
  1991年   25篇
  1990年   19篇
  1989年   23篇
  1988年   20篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   17篇
  1983年   8篇
  1982年   8篇
  1980年   7篇
  1979年   8篇
  1978年   8篇
  1976年   8篇
  1973年   16篇
  1971年   6篇
  1967年   5篇
  1962年   8篇
排序方式: 共有6845条查询结果,搜索用时 15 毫秒
1.
The association between the red macroalga Jania adhaerens J. V. Lamour. and the sponge Haliclona caerulea is the most successful life‐form between 2 and 4 m depth in Mazatlán Bay (Mexican Pacific). J. adhaerens colonizes the rocky intertidal area and penetrates into deeper areas only when it lives in association with H. caerulea. The aposymbiotic form of the sponge has not been reported in the bay. To understand the ecological success of this association, we examined the capacity of J. adhaerens to acclimate in Mazatlán Bay using transplant experiments. The transplanted aposymbiotic J. adhaerens did not survive the first 2 weeks; however, J. adhaerens when living in association with H. caerulea, acclimated easily to depth, showing no sign of mortality during the 103 d of the experiment. We conclude that the ability of J. adhaerens to colonize in deeper areas in this hydrodynamic environment may in part rely on the protection provided by the sponge to the algal canopy. Both species contribute to the shape of the associated form. Nevertheless, the morphological variation in the association appears to be dominated by the variation in J. adhaerens canopy to regulate pigment self‐shading under light‐limited conditions and/or tissue resistance under high hydrodynamics. Consequently, our results are consistent with light as the abiotic controlling factor, which regulates the lower depth distribution of the association in Mazatlán Bay, through limiting the growth rate of J. adhaerens. Hydrodynamics may determine the upper limit of the association by imposing high mass losses.  相似文献   
2.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
3.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
4.
5.
In 46,XY individuals, testes are determined by the activity of the SRY gene (sex-determining region Y), located on the short arm of the Ychromosome. The other genetic components of the cascade that leads to testis formation are unknown and may be located on the Xchromosome or on the autosomes. Evidence for the existence of several loci associated with failure of male sexual development is indicated by reports of 46,XY gonadal dysgenesis associated with structural abnormalities of the Xchromosome or of autosomes (chromosomes9, 10, 11 and 17). In this report, we describe the investigation of a child presenting with multiple congenital abnormalities, mental retardation and partial testicular failure. The patient had a homogeneous de novo 46,XY,inv dup(9)(pter→p24.1::p21.1 →p23.3::p24.1→qter) chromosome complement. No deletion was found by either cytogenetic or molecular analysis. The SRY gene and DSS region showed no abnormalities. Southern blotting dosage analysis with 9p probes and fluorescent in situ hybridisation data indicated that the distal breakpoint of the duplicated fragment was located at 9p24.1, proximal to the SNF2 gene. We therefore suggest that a gene involved in normal testicular development and/or maintenance is present at this position on chromosome 9. Received: 20 January 1997 / Accepted: 5 November 1997  相似文献   
6.
Seventy-three species of macroalgae from the Mexican Pacific, Atlantic and Caribbean coast were screened for ichtyotoxic activity. Ethanolic, acetonic and aqueous extracts were prepared and tested against the fish Carassius auratus. The extracts were classified on the basis of their effects as: toxic if the fish died in two hours or less; moderately toxic, if the organism behaved abnormally but death did notoccur, and non-toxic if the fish did not display any change. 79% species were ichtyotoxic to some degree. Extracts of 39 species were toxic, with at least one extract with lethal effects, 19 were moderately toxic and 15 species were non-toxic. Only the extracts ofDictyota bartayresiana, Dictyota cervicornis,Lobophora variegata, Bryothamnion triquetrum and Laurencia obtusa were toxic in all three solvents. The acetone and ethanol extracts were more active, and therefore are more suitable for extraction of toxic substances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
8.
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.  相似文献   
9.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号