首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   4篇
  2022年   2篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2003年   2篇
排序方式: 共有23条查询结果,搜索用时 378 毫秒
1.
2.
Phimosis is the inability of the penis to protrude from the prepuce. In the present report, we present two cases of phimosis in two rhesus monkeys. Surgical enlargement of preputial orifice was performed for unrestricted movement of penis. The exact cause of this condition is unknown to us.  相似文献   
3.
Ghrelin, the endogenous ligand for growth hormone secretagogue receptor, has been reported to prevent ischemia/reperfusion (I/R) injury in various tissues by its antioxidant activity. Therefore, this study was aimed to investigate the effect of ghrelin on sperm quality and antioxidant enzyme activity in a rat testicular ischemia/reperfusion injury model. Forty-two male Wistar rats were divided into groups control, I/R, and I/R plus ghrelin. The right testes were rotated 720° for 1 h and were allowed to reperfuse for 4 h and 30 days thereafter. Ghrelin (40 nmol/kg IP) or vehicle (physiological saline) was administrated 15 min before reperfusion. After 4 h of reperfusion, a right orchiectomy was performed to measure the biochemical parameters. In addition, the sperm was collected from the epididymis after 30 days of reperfusion, and sperm characteristics were examined. The malondialdehyde levels of the testis tissues were significantly increased, but a statistically significant decrease was found in the superoxide dismutase, glutathione peroxidase, and catalase activities in the I/R group as compared with the control, indicating I/R injury. The sperm evaluation showed a significant reduction in all characteristics resulted from I/R compared with the control. In the ghrelin-treated group, the malondialdehyde values were significantly lowered, and only enzyme activity of glutathione peroxidase showed significant increases compared with the I/R group. Ghrelin significantly enhanced sperm motility, movement, and concentration but did not prevent I/R-induced reduction in membrane integrity in the testes of rats compared to the I/R group. Our results suggest that ghrelin treatment has a protective role on IR-induced testicular injury, and this effect may be due to its antioxidant properties.  相似文献   
4.
Use of SNPs has been favoured due to their abundance in plant and animal genomes, accompanied by the falling cost and rising throughput capacity for detection and genotyping. Here, we present in vitro (obtained from targeted sequencing) and in silico discovery of SNPs, and the design of medium‐throughput genotyping arrays for two oyster species, the Pacific oyster, Crassostrea gigas, and European flat oyster, Ostrea edulis. Two sets of 384 SNP markers were designed for two Illumina GoldenGate arrays and genotyped on more than 1000 samples for each species. In each case, oyster samples were obtained from wild and selected populations and from three‐generation families segregating for traits of interest in aquaculture. The rate of successfully genotyped polymorphic SNPs was about 60% for each species. Effects of SNP origin and quality on genotyping success (Illumina functionality Score) were analysed and compared with other model and nonmodel species. Furthermore, a simulation was made based on a subset of the C. gigas SNP array with a minor allele frequency of 0.3 and typical crosses used in shellfish hatcheries. This simulation indicated that at least 150 markers were needed to perform an accurate parental assignment. Such panels might provide valuable tools to improve our understanding of the connectivity between wild (and selected) populations and could contribute to future selective breeding programmes.  相似文献   
5.
Numerous wild bovids are facing threat of extinction owing to the loss of habitat and various other reasons. Spermatogonial stem cells (SSCs) represent the only germline stem cells in adult body that are capable of self-renewal and that can undergo differentiation to produce haploid germ cells. SSCs can, therefore, serve as a useful resource for preservation of germplasm of threatened and endangered mammals. The Indian black buck (Antilope cervicapra L.) is a small Indian antelope that is listed as endangered by the Indian Wildlife Protection Act, 1972. Immunohistochemical analysis of testes tissues of black buck revealed the presence of spermatogonia that were specifically stained by lectin-Dolichos biflorus agglutinin (DBA). The expression of pluripotent cell-specific markers, NANOG and stage-specific embryonic antigen-1 (SSEA-1), was detected in spermatogonia. Interestingly, the expression of POU5F1 (OCT3/4) was absent from spermatogonia, however, it was detected in differentiating cells such as spermatocytes and round spermatids but not in elongated spermatids. The expression of NANOG protein was also present in spermatocytes but absent in round and elongated spermatids. Using the testis transplantation assay, stem cell potential of black buck spermatogonia was confirmed as indicated by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. The findings from this study suggest the presence of SSCs in the testis of an endangered bovid for the first time and open new possibility to explore the use of SSCs in conservation.  相似文献   
6.
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.  相似文献   
7.
In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV–Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (Kb = 1.4 × 104 M?1) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 ?4.8 × 104 M?1. CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.  相似文献   
8.
9.
10.
RIG-I-like receptors are the key cytosolic sensors for RNA viruses and induce the production of type I interferons (IFN) and pro-inflammatory cytokines through a sole adaptor IFN-β promoter stimulator-1 (IPS-1) (also known as Cardif, MAVS and VISA) in antiviral innate immunity. These sensors also have a pivotal role in anticancer activity through induction of apoptosis. However, the mechanism for their anticancer activity is poorly understood. Here, we show that anticancer vaccine adjuvant, PolyIC (primarily sensed by MDA5) and the oncolytic virus, Newcastle disease virus (NDV) (sensed by RIG-I), induce anticancer activity. The ectopic expression of IPS-1 into type I IFN-responsive and non-responsive cancer cells induces anticancer activity. PolyIC transfection and NDV infection upregulate pro-apoptotic gene TRAIL and downregulate the anti-apoptotic genes BCL2, BIRC3 and PRKCE. Furthermore, stable knockdown of IPS-1, IRF3 or IRF7 in IFN-non-responsive cancer cells show reduced anticancer activity by suppressing apoptosis via TRAIL and anti-apoptotic genes. Collectively, our study shows that IPS-1 induces anticancer activity through upregulation of pro-apoptotic gene TRAIL and downregulation of the anti-apoptotic genes BCL2, BIRC3 and PRKCE via IRF3 and IRF7 in type I IFN-dependent and -independent manners.The primary protection of the host from various pathogens is ensured by the innate immune system, which consists of families of sensors such as the Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors. These sensors recognize the diverse range of pathogens in various cellular compartments and lead to the activation of innate immunity, including the production of various cytokines that create an anti-pathogenic environment to limit the pathogen. RLRs are cytosolic sensors that recognize the viral RNA and recruit an adaptor, Interferon (IFN)-β promoter stimulator-1 (IPS-1), also known as CARDIF, MAVS or VISA. IPS-1, a protein that contains a caspase activation and -recruitment domain (CARD), is localized to the mitochondria for its antiviral function.1, 2, 3, 4 Mice lacking IPS-1 show severely impaired antiviral innate immunity.5 The RLRs/IPS-1 signaling axis activates a cascade of signals that predominantly induces the production of the type I IFN and pro-inflammatory cytokines through IRFs and NF-κB, respectively, to establish an antiviral state.In addition to the pivotal role that host immunity has against numerous pathogen challenges, it is crucial in immune surveillance against altered-self cells. Immune mediators such as cytokines, chemokines and type I IFN initiate a complex network of signals to induce an anti-tumor state by triggering various biochemical processes such as cell cycle arrest and apoptosis. Additionally, these immune mediators facilitate cytotoxicity to the tumor cells through the recruitment of immunocompetent cells. The cytotoxic activity is mediated through the upregulation of pro-apoptotic genes and the downregulation of anti-apoptotic genes. These changes are critical for cancer cell death.6 Various innate and adaptive cytokines are used for treatment of several types of cancer.7, 8 The type I IFN are essential for antiviral immunity and induce pleiotropic effects such as the inhibition of malignant growth and apoptosis of altered-self cells.In addition, pathogen-associated molecular patterns such as polyinosinic:polycytidylic acid (polyIC), a synthetic analog of double-stranded RNA and viruses known as oncolytic viruses such as Vesicular stomatitis virus, Newcastle disease virus (NDV) and Sendai virus induce anticancer activity.9 However, the molecular mechanisms for these agents are poorly understood.Here, we showed that treatment of cancer cells with polyIC transfection or NDV infection initiates RIG-I- and MDA5-dependent anticancer activity through recruitment of an adaptor, IPS-1. Using IFN α/β receptor1 (IFNAR1)-sufficient and IFNAR1-deficient cancer cells, we showed that these anticancer activities require the RLR signaling pathway. However, type I IFN are dispensable for the anticancer activity. The RLR pathway induces anticancer activity through the selective induction of cell death or apoptosis via upregulation of the pro-apoptotic gene TRAIL and downregulation of the anti-apoptotic genes BCL2, BIRC3 and PRKCE. These changes lead to post-translational activation of caspases −3 and −9 and PARP-1 in cancer cells. Furthermore, our study reveals that IFN regulatory factors (IRF)3 and IRF7 are indispensable for the RLR-mediated anticancer activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号