首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
  国内免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2000年   2篇
  1996年   1篇
排序方式: 共有42条查询结果,搜索用时 218 毫秒
1.
以采自新疆各地的350余份芦荟藓属植物为材料,对新疆芦荟藓属植物的分类及其分布进行研究。结果显示,新疆产芦荟藓属植物3种:短喙芦荟藓(Aloina brevirostris(Hook.&Grev.)Kindb.)、斜叶芦荟藓(A.obliquifolia(Müll.Hal.)Broth.)和钝叶芦荟藓(A.rigida(Hedw.)Limpr.)。其中斜叶芦荟藓为新疆新记录种。对它们的形态特征进行了描述,明确了各种的识别特征,并提供了生境、产地与分布地等信息及显微照片,编制了新疆芦荟藓属植物分种检索表。  相似文献   
2.
Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine.  相似文献   
3.
Plant Molecular Biology - Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant...  相似文献   
4.
Adaptation and survival of Trypanosoma brucei requires editing of mitochondrial mRNA by uridylate (U) insertion and deletion. Hundreds of small guide RNAs (gRNAs) direct the mRNA editing at over 3,000 sites. RNA editing is controlled during the life cycle but the regulation of substrate and stage specificity remains unknown. Editing progresses in the 3’ to 5’ direction along the pre-mRNA in blocks, each targeted by a unique gRNA. A critical editing factor is the mitochondrial RNA binding complex 1 (MRB1) that binds gRNA and transiently interacts with the catalytic RNA editing core complex (RECC). MRB1 is a large and dynamic complex that appears to be comprised of distinct but related subcomplexes (termed here MRBs). MRBs seem to share a ‘core’ complex of proteins but differ in the composition of the ‘variable’ proteins. Since some proteins associate transiently the MRBs remain imprecisely defined. MRB1 controls editing by unknown mechanisms, and the functional relevance of the different MRBs is unclear. We previously identified two distinct MRBs, and showed that they carry mRNAs that undergo editing. We proposed that editing takes place in the MRBs because MRBs stably associate with mRNA and gRNA but only transiently interact with RECC, which is RNA free. Here, we identify the first specialized functions in MRBs: 1) 3010-MRB is a major scaffold for RNA editing, and 2) REH2-MRB contains a critical trans-acting RNA helicase (REH2) that affects multiple steps of editing function in 3010-MRB. These trans effects of the REH2 include loading of unedited mRNA and editing in the first block and in subsequent blocks as editing progresses. REH2 binds its own MRB via RNA, and conserved domains in REH2 were critical for REH2 to associate with the RNA and protein components of its MRB. Importantly, REH2 associates with a ~30 kDa RNA-binding protein in a novel ~15S subcomplex in RNA-depleted mitochondria. We use these new results to update our model of MRB function and organization.  相似文献   
5.
6.
7.
Cyclophilin A (CypA) is a peptidyl-prolyl cis/trans isomerase that interacts with the matrix protein (M1) of influenza A virus (IAV) and restricts virus replication by regulating the ubiquitin–proteasome-mediated degradation of M1. However,the mechanism by which CypA regulates M1 ubiquitination remains unknown. In this study, we reported that E3 ubiquitin ligase AIP4 promoted K48-linked ubiquitination of M1 at K102 and K104, and accelerated ubiquitin–proteasome-mediated degradation of M1. The recombinant IAV with mutant M1 (K102 R/K104 R) could not be rescued, suggesting that the ubiquitination of M1 at K102/K104 was essential for IAV replication. Furthermore, CypA inhibited AIP4-mediated M1 ubiquitination by impairing the interaction between AIP4 and M1. More importantly, both the mutations of M1 (K102 R/K104 R) and CypA inhibited the nuclear export of M1, indicating that CypA regulates the cellular localization of M1 via inhibition of AIP4-mediated M1 ubiquitination at K102 and K104, which results in the reduced replication of IAV.Collectively, our findings reveal a novel ubiquitination-based mechanism by which CypA regulates the replication of IAV.  相似文献   
8.
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.  相似文献   
9.
Summary The countertransport of Ca2+ and Na+ across the membranes of the unicellular fresh-water algaChlamydomonas reinhardtii CW-15 and twoDunaliella species differing in salt tolerance was studied. All algae used are devoid of cell walls. The calcium uptake by twoDunaliella species depended markedly on the intracellular sodium concentration. This calcium uptake was accompanied by Na+ release. For 15 and 30 s after artificial gradient formation (Naint + greater than Naext +) the ratio of released Na+ to absorbed Ca2+ was 31 and 41, respectively. For the extremely halotolerantD. salina, the apparent Michaelis constant of the Ca2+ uptake was 33 M, and for the marine halotolerant algaD. maritima, it was equal to 400 M, presuming more efficient Na+-for-Ca2+ exchange inD. salina cells. Ouabain, an inhibitor of Na+/K+-ATPase, suppressed Na+ transfer by 25%, whereas the agents blocking Ca2+-channels did not affect the transport of Ca2+ and Na+. The oppositely directed transmembrane Ca2+ and Na+ transfer was shown to depend on the external concentrations of Na+ and H+. In the fresh-water algaC. reinhardtii CW-15 (Naext + greater than Naint +), the direction of Ca2+ and Na+ fluxes across the plasma membrane was opposite to those described for Dunaliella cells. The results obtained point to the ability of the Na+-Ca2+ exchanger function in plasma membranes of algal cells.  相似文献   
10.
The contents of octopamine and its precursors (tyrosine and tyramine) were studied in adults of two lines of Drosophila virilis with contrasting stress responses. It was demonstrated that in individuals responding to stress by a hormonal stress reaction (line 101), the contents of octopamine and tyrosine are lower than in nonresponding flies (line 147). It was found that there is no difference between the lines in the level of tyramine under normal conditions. The dopamine response to stressor was also studied. Genetic analysis of these differences revealed that they are controlled by a single gene and that the gene is not sex-linked. The gene controlling the response was found to be linked to chromosome 6 of D. virilis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号