首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
HPK1, a member of mammalian Ste20-like serine/threonine kinases, is lost in >95% pancreatic cancer through proteasome-mediated degradation. However, the mechanism of HPK1 loss has not been defined. The aims of this study are to identify the ubiquitin ligase and to examine the mechanisms that targets HPK1 degradation. We found that the CUL7/Fbxw8 ubiquitin ligase targeted HPK1 for degradation via the 26 S proteasome. The ubiquitination of HPK1 required its kinase activity and autophosphorylation. Wild-type protein phosphatase 4 (PP4), but not the phosphatase-dead PP4 mutant, PP4-RL, inhibits the interaction of Fbxw8 with HPK1 and Fbxw8-mediated ubiquitination of HPK1. In addition, we showed that Thr-355 of HPK1 is a key PP4 dephosphorylation site, through which CUL7/Fbxw8 ubiquitin ligase and PP4 regulates HPK1 stability. Knockdown of Fbxw8 restores endogenous HPK1 protein expression and inhibits cell proliferation of pancreatic cancer cells. Our study demonstrated that targeted degradation of HPK1 by the CUL7/Fbxw8 ubiquitin ligase constitutes a negative-feedback loop to restrain the activity of HPK1 and that CUL7/Fbxw8 ubiquitin ligase promotes pancreatic cancer cell proliferation. CUL7/Fbxw8 ubiquitin ligase-mediated HPK1 degradation revealed a direct link and novel role of CUL7/Fbxw8 ubiquitin ligase in the MAPK pathway, which plays a critical role in cell proliferation and differentiation.  相似文献   

4.
The COP9 signalosome (CSN) is an essential multisubunit complex that regulates the activity of cullin-RING ubiquitin ligases by removing the ubiquitin-like peptide NEDD8 from cullins. Here, we demonstrate that the CSN can affect other components of the ubiquitination cascade. Down-regulation of human CSN4 or CSN5 induced proteasome-mediated degradation of the ubiquitin-conjugating enzyme UBC3/Cdc34. UBC3 was targeted for ubiquitination by the cullin-RING ubiquitin ligase SCFβTrCP. This interaction required the acidic C-terminal extension of UBC3, which is absent in ubiquitin-conjugating enzymes of the UBCH5 family. Conversely, the UBC3 acidic domain was sufficient to impart sensitivity to SCFβTrCP-mediated ubiquitination to UBCH5 enzymes. Our work indicates that the CSN is necessary to ensure the stability of selected ubiquitin-conjugating enzymes and uncovers a novel pathway of regulation of ubiquitination processes.  相似文献   

5.
Influenza A virus matrix protein (M1) is the most abundant conservative protein that regulates the replication, assembly and budding of the viral particles upon infection. Several host cell factors have been determined to interact with M1 possibly in regulating influenza virus replication. By yeast two-hybrid screening, the isomerase cyclophilin A (CypA) was identified to interact with the M1 protein. CypA specifically interacted with M1 both in vitro and in vivo . The mutagenesis results showed CypA bound to the functional middle (M) domain of M1. The depletion of endogenous CypA by RNA interference resulted in the increase of influenza virus infectivity while overexpression of CypA caused decreasing the infectivity in affected cells. The immunofluorescence assays indicated that overexpressed CypA deduced the infectivity and inhibited the translocation of M1 protein into the nucleus while did not affect nucleoprotein entering the nucleus. Further studies indicated that overexpression of CypA significantly increased M1 self-association. Western blot with purified virions confirmed that CypA was encapsidated within the virus particle. These results together indicated that CypA interacted with the M1 protein and affected the early stage of the viral replication.  相似文献   

6.
7.
8.
The human plasmacytoid dendritic cell (pDC) receptor BDCA2 forms a complex with the adaptor FcεR1γ to activate an ITAM-signaling cascade. BDCA2 receptor signaling negatively regulates the TLR7/9-mediated type 1 IFN responses in pDCs, which may play a key role in controlling self-DNA/RNA-induced autoimmunity. We report in this article that CD2-associated adaptor protein (CD2AP), which is highly expressed in human pDCs, positively regulates BDCA2/FcεR1γ receptor signaling. By immunoprecipitation and mass spectrometry analyses, we found that CD2AP bound to SHIP1. Knockdown of CD2AP or SHIP1 reduced the BDCA2/FcεR1γ-mediated ITAM signaling and blocked its inhibition of TLR9-mediated type 1 IFN production. Knockdown of CD2AP or SHIP1 also enhanced the ubiquitination and degradation of Syk and FcεR1γ that was mediated by the E3 ubiquitin ligase Cbl. This led us to discover that, upon BDCA2 cross-linking, the CD2AP/SHIP1 complex associated with Cbl and inhibited its E3 ubiquitin ligase activity. In human primary pDCs, cross-linking of the BDCA2/FcεR1γ complex induced the recruitment of the CD2AP/SHIP1/Cbl complex to the plasma membrane of pDCs, where it colocalized with the BDCA2/FcεR1γ complex. Therefore, CD2AP positively regulates BDCA2/FcεR1γ signaling by forming a complex with SHIP1 to inhibit the E3 ubiquitin ligase Cbl.  相似文献   

9.
The CXCL12/CXCR4 signaling axis plays an important role in human health and disease; however, the molecular mechanisms mediating CXCR4 signaling remain poorly understood. Ubiquitin modification of CXCR4 by the E3 ubiquitin ligase AIP4 is required for lysosomal sorting and degradation, which is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. CXCR4 sorting is regulated by an interaction between endosomal localized arrestin-2 and STAM-1, an ESCRT-0 component. Here, we report a novel role for AIP4 and STAM-1 in regulation of CXCR4 signaling that is distinct from their function in CXCR4 trafficking. Depletion of AIP4 and STAM-1 by siRNA caused significant inhibition of CXCR4-induced ERK-1/2 activation, whereas overexpression of these proteins enhanced CXCR4 signaling. We further show that AIP4 and STAM-1 physically interact and that the proline-rich region in AIP4 and the SH3 domain in STAM-1 are essential for the interaction. Overexpression of an AIP4 catalytically inactive mutant and a mutant that shows poor binding to STAM-1 fails to enhance CXCR4-induced ERK-1/2 signaling, as compared with wild-type AIP4, suggesting that the interaction between AIP4 and STAM-1 and the ligase activity of AIP4 are essential for ERK-1/2 activation. Remarkably, a discrete subpopulation of AIP4 and STAM-1 resides in caveolar microdomains with CXCR4 and appears to mediate ERK-1/2 signaling. We propose that AIP4-mediated ubiquitination of STAM-1 in caveolae coordinates activation of ERK-1/2 signaling. Thus, our study reveals a novel function for ubiquitin in the regulation of CXCR4 signaling, which may be broadly applicable to other G protein-coupled receptors.  相似文献   

10.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

11.
Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs'' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation.  相似文献   

12.
S-RNase-based self-incompatibility has been identified in three flowering plant families, including the Solanaceae, and this self/non-self recognition mechanism between pollen and pistil is controlled by two polymorphic genes at the S -locus, S-RNase and S-locus F-box ( SLF ). S-RNase is produced in the pistil and taken up by pollen tubes in a non- S- haplotype-specific manner. How an allelic product of SLF interacts with self and non-self S-RNases to result in growth inhibition of self pollen tubes is not completely understood. One model predicts that SLF targets non-self S-RNases for ubiquitin/26S proteasome-mediated degradation, thereby only allowing self S-RNase to exert cytotoxic activity inside a pollen tube. To test this model, we studied whether any of the 20 lysine residues in S3-RNase of Petunia inflata might be targets for ubiquitination. We identified six lysines near the C-terminus for which mutation to arginine significantly reduced ubiquitination and degradation of the mutant S3-RNase, GST:S3-RNase (K141–164R) in pollen tube extracts. We further showed that GST:S3-RNase (K141–164R) and GST:S3-RNase had similar RNase activity, suggesting that their degradation was probably not caused by an ER-associated protein degradation pathway that removes mis-folded proteins. Finally, we showed that PiSBP1 ( P. inflata S-RNase binding protein 1), a potential RING-HC subunit of the PiSLF ( P. inflata SLF)-containing E3-like complex, could target S-RNase for ubiquitination in vitro . All these results suggest that ubiquitin/26S proteasome-dependent degradation of S-RNase may be an integral part of the S-RNase-based self-incompatibility mechanism.  相似文献   

13.
Atrophin-1-interacting protein 4 (AIP4) is the human homolog of the mouse Itch protein (hItch), an E3 ligase for Notch and JunB. Human enhancer of filamentation 1 (HEF1) has been implicated in signaling pathways such as those mediated by integrin, T cell receptor, and B cell receptor and functions as a multidomain docking protein. Recent studies suggest that HEF1 is also involved in the transforming growth factor-beta (TGF-beta) signaling pathways, by interacting with Smad3, a key signal transducer downstream of the TGF-beta type I receptor. The interaction of Smad3 with HEF1 induces HEF1 proteasomal degradation, which was further enhanced by TGF-beta stimulation. The detailed molecular mechanisms of HEF1 degradation regulated by Smad3 were poorly understood. Here we report our studies that demonstrate the function of AIP4 as an ubiquitin E3 ligase for HEF1. AIP4 forms a complex with both Smad3 and HEF1 through its WW domains in a TGF-beta-independent manner and regulates HEF1 ubiquitination and degradation, which can be enhanced by TGF-beta stimulation. These findings reveal a new mechanism for Smad3-regulated proteasomal degradation events and also broaden the network of cross-talk between the TGF-beta signaling pathway and those involving HEF1 and AIP4.  相似文献   

14.
15.
Smad7 functions as an intracellular antagonist in transforming growth factor-beta (TGF-beta) signaling. In addition to interacting stably with the activated TGF-beta type I receptor (TbetaRI) to prevent phosphorylation of the receptor-regulated Smads (Smad2 and Smad3), Smad7 also induces degradation of the activated TbetaRI through association with different E3 ubiquitin ligases. Using the two-hybrid screen, we identified atrophin 1-interacting protein 4 (AIP4) as an E3 ubiquitin ligase that specifically targets Smad7 for ubiquitin-dependent degradation without affecting the turnover of the activated TbetaRI. Surprisingly, we found that despite the ability to degrade Smad7, AIP4 can inhibit TGF-beta signaling, presumably by enhancing the association of Smad7 with the activated TbetaRI. Consistent with this notion, expression of a catalytic mutant of AIP4, which is unable to induce ubiquitination and degradation of Smad7, also stabilizes the TbetaRI.Smad7 complex, resulting in inhibition of TGF-beta signaling. The ability of AIP4 to enhance the inhibitory function of Smad7 independent of its ubiquitin ligase activity reveals a new mechanism by which E3 ubiquitin ligases may function to turn off TGF-beta signaling.  相似文献   

16.
17.
18.
Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP.  相似文献   

19.
Ubiquitination of the chemokine receptor CXCR4 serves as a targeting signal for lysosomal degradation, but the mechanisms mediating ubiquitination and lysosomal sorting remain poorly understood. Here we report that the Nedd4-like E3 ubiquitin ligase AIP4 mediates ubiquitination of CXCR4 at the plasma membrane, and of the ubiquitin binding protein Hrs on endosomes. CXCR4 activation promotes CXCR4 colocalization with AIP4 and Hrs within the same region of endosomes. Endosomal sorting of CXCR4 is dependent on Hrs as well as the AAA ATPase Vps4, the latter involved in regulating the ubiquitination status of both CXCR4 and Hrs. We propose a model whereby AIP4, Hrs, and Vps4 coordinate a cascade of ubiquitination and deubiquitination events that sort CXCR4 to the degradative pathway.  相似文献   

20.
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta-cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-1 activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号