首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   9篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   10篇
  2013年   10篇
  2012年   3篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1979年   2篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1963年   3篇
  1962年   1篇
  1956年   1篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
  1941年   1篇
  1936年   1篇
  1935年   1篇
  1888年   1篇
排序方式: 共有168条查询结果,搜索用时 656 毫秒
1.
In the present study, we have localized immunohistochemically S-100 protein, glial fibrillary acidic (GFA) protein, and neuron-specific enolase (NSE) by the unlabelled antibody peroxidase-antiperoxidase technique. Special attention was paid to the influence of fixation and of pretreatment of sections with proteolytic enzymes. It appeared that the final immunostaining of a given antigen largely depends on the fixative and on the species used. Moreover, pepsin pretreatment proved to be necessary to unmask S-100 protein in quail and GFA protein in rat. S-100 protein (rat, human) and GFA protein (human) immunoreactivities were detected in the folliculo-stellate (FS) cells. In quail, S-100 protein was also found in cells, which were not arranged around a follicular lumen and, in rat, the endothelial cells were immunostained for GFA protein. Clusters of granular cells were weakly immunostained for NSE in all species. An exclusive relationship between FS cells and S-100 protein could not be ascertained from this study.  相似文献   
2.
    
Summary Immunohistochemical methods were used to show the presence and distribution of transforming growth factor-1 and 2 during folliculogenesis in quail ovarian tissues. The results indicated that both transforming growth factor- subtypes are present. Immunolabelling for transforming growth factor-1 demonstrated that prelampbrush oocytes are immunoreactive in the Balbiani complex, and developing and pre-ovulatory oocytes in the zona radiata. Immunolabelling was also associated with granulosa cells. The number of stained granulosa cells decreased during folliculogenesis. In the pre-ovulatory follicles, immunolabelling was found predominantly in the theca interna. Immunolabelling for transforming growth factor-2 was associated with the zona radiata of developing and preovulatory follicles, and with stromal interstitial cells. Moderate immunoreactivity was found in the Balbiani complex of prelampbrush oocytes. Weak immunolabelling was localized in the granulosa cells of prelampbrush follicles, and in a few cells of the theca interna of pre-ovulatory follicles. The immunolocalization of transforming growth factor-1 and-2 in the quail ovary supports their autocrine and/or paracrine role in avian ovarian processes.  相似文献   
3.
Summary The spectral distribution of the formaldehyde-induced fluorescence emitted by model solutions and by adenohypophyses after intraperitoneal injection of l-dopa or 5-hydroxytryptophan was analyzed microspectrographically. Based on previously reported studies and on present findings, it seems that dopamine is stored in the strongly fluorescent cells after injection of l-dopa, and that a compound closely related to 5-hydroxytryptophan or serotonin is present in most of the cells after injection of 5-hydroxytryptophan. A non-specific, granular fluorescence appeared after 5-hydroxytryptophan and, to a lesser extend, l-dopa treatment. It probably represents autofluorescence of lysosomes, which are numerous in these circumstances.  相似文献   
4.
Operation Crayweed focuses on the restoration of underwater forests that disappeared from the coastline of Sydney, Australia’s largest city, 40 years previously. We show how a combination of science, hands‐on restoration, community engagement and art has helped the project to reach its goals as well as raise awareness about the importance of underwater kelp forests that are experiencing global decline.  相似文献   
5.
The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte–stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.  相似文献   
6.
Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population structure across the species'' range. The direct effects of large fires, together with associated changes in the spatial and temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be expected to show strongly structured populations. Such effects must be considered when formulating management actions to conserve species in fire-prone systems.  相似文献   
7.

Background

Metabolic syndrome (MetS) is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS) and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined.

Methodology/Principal Findings

Cultured mouse myoblasts (C2C12), adipocytes (3T3-L1), hepatocytes (FL-83B), and monocytes (RAW 264.7) were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line.

Conclusions/Significance

Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated with the development of these diseases in the general population.  相似文献   
8.
9.
Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents.  相似文献   
10.
Conservation breeding management aims to reduce inbreeding and maximize the retention of genetic diversity in endangered populations. However, breeding management of wild populations is still rare, and there is a need for approaches that provide data-driven evidence of the likelihood of success of alternative in situ strategies. Here, we provide an analytical framework that uses in silico simulations to evaluate, for real wild populations, (i) the degree of population-level inbreeding avoidance, (ii) the genetic quality of mating pairs, and (iii) the potential genetic benefits of implementing two breeding management strategies. The proposed strategies aim to improve the genetic quality of breeding pairs by splitting detrimental pairs and allowing the members to re-pair in different ways. We apply the framework to the wild population of the Critically Endangered helmeted honeyeater by combining genomic data and field observations to estimate the inbreeding (i.e., pair-kinship) and genetic quality (i.e., Mate Suitability Index) of all mating pairs for seven consecutive breeding seasons. We found no evidence of population-level inbreeding avoidance and that ~91.6% of breeding pairs were detrimental to the genetic health of the population. Furthermore, the framework revealed that neither proposed management strategy would significantly improve the genetic quality or reduce inbreeding of the mating pairs in this population. Our results demonstrate the usefulness of our analytical framework for testing the efficacy of different in situ breeding management strategies and for making evidence-based management decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号