首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Protection and restoration of species in the wild may require conservation breeding programs under genetic management to minimize deleterious effects of genetic changes that occur in captivity, while preserving populations' genetic diversity and evolutionary resilience. Here, through interannual pedigree analyses, we first assessed the efficiency of a 21-year genetic management, including minimization of mean kinship, inbreeding avoidance, and regular addition of founders, of a conservation breeding program targeting on Houbara bustard (Chlamydotis undulata undulata) in Morocco. Secondly, we compared pedigree analyses, the classical way of assessing and managing genetic diversity in captivity, to molecular analyses based on seven microsatellites. Pedigree-based results indicated an efficient maintenance of the genetic diversity (99% of the initial genetic diversity retained) while molecular-based results indicated an increase in allelic richness and an increase in unbiased expected heterozygosity across time. The pedigree-based average inbreeding coefficient F remained low (between 0.0004 and 0.003 in 2017) while the proportion of highly inbred individuals (F > .1) decreased over time and reached 0.2% in 2017. Furthermore, pedigree-based F and molecular-based individual multilocus heterozygosity were weakly negatively correlated, (Pearson's r = −.061 when considering all genotyped individuals), suggesting that they cannot be considered as alternatives, but rather as complementary sources of information. These findings suggest that a strict genetic monitoring and management, based on both pedigree and molecular tools can help mitigate genetic changes and allow to preserve genetic diversity and evolutionary resilience in conservation breeding programs.  相似文献   

2.
    
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.  相似文献   

3.
    
Investigating whether mating patterns are biased in relation to kinship in isolated populations can provide a better understanding of the occurrence of inbreeding avoidance mechanisms in wild populations. Here, we report on the genetic relatedness (r) among breeding pairs in a relict population of Thorn‐tailed Rayadito (Aphrastura spinicauda) in north‐central Chile that has experienced a long‐term history of isolation. We used simulations based on 8 years of data to assess whether mating is random with respect to relatedness. We found that mean and median population values of pair relatedness tended to be lower than randomly generated values, suggesting that mating is not random with respect to kinship. We hypothesize that female‐biased dispersal is the main mechanism reducing the likelihood of mating among kin, and that the proportion of related pairs (i.e., r > 0.125) in the study population (25%) would presumably be higher in the absence of sex‐biased dispersal. The occurrence of other mechanisms such as extra‐pair copulations, delayed breeding, and active inbreeding avoidance through kin discrimination cannot be dismissed and require further study.  相似文献   

4.
    
Captive populations of endangered species are managed to preserve genetic diversity and retain reproductive fitness. Minimizing kinship (MK) has been predicted to maximize the retention of gene diversity in pedigreed populations with unequal founder representation. MK was compared with maximum avoidance of inbreeding (MAI) and random choice of parents (RAND) using Drosophila melanogaster. Forty replicate populations of each treatment were initiated with unequal founder representation and managed for four generations. MK retained significantly more gene diversity and allelic diversity based on six microsatellite loci and seven allozyme loci than MAI or RAND. Reproductive fitness under both benign and competitive conditions did not differ significantly among treatments. Of the methods considered, MK is currently the best available for the genetic management of captive populations. Zoo Biol 16:377–389, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
    
PETER H. BECKER 《Ibis》2012,154(1):74-84
Mating between close relatives can have deleterious effects on reproductive success or offspring fitness, which should favour the evolution of active or passive inbreeding avoidance mechanisms. In birds, evidence for active inbreeding avoidance by kin‐discriminative mate choice is scarce; many studies describe random mating in relation to kinship and thus support passive inbreeding avoidance by natal dispersal. However, most studies were conducted in island populations of short‐lived passerines with fast alternation of generations. In this study, we present inbreeding estimates based on pedigree data from a 16‐year study in a coastal colony of Common Terns Sterna hirundo, a long‐lived seabird with delayed sexual maturation and low rates of extra‐pair paternity. Incestuous mating was rare (four of 2387 pairs), even if partially accounting for incomplete pedigrees. Although the average relatedness of observed pairs was lower than would be expected from random pairing, the inbreeding coefficient did not differ from random mating. Hence, we found no clear evidence for active inbreeding avoidance by kin‐discriminative mate choice, and the low level of inbreeding seems to be related to the high immigration rate in the colony and thus to be maintained passively by dispersal.  相似文献   

6.
    
The riverine rabbit (Bunolagus monticularis) is an endangered and endemic species found within a small geographic range in semiarid southern Africa. A captive breeding program has been initiated for reintroducing rabbits into suitable but vacant habitat. DNA fingerprinting was used to identify individuals within a captive group suitable for inclusion in a larger captive breeding program. This methodology allowed the ranking of suitabilities of these individuals, and the results emphasize the need to capture wild rabbits over a wide geographic area for setting up a larger founder population. A statistical technique for inferring linkage between fingerprint probes was used. Fingerprinting methodology allowed a genetic basis for planning the captive breeding program. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Animals should decipher information about the genetic make‐up of conspecifics in order to enhance the fitness benefits associated with mate choice. Although there is increasing evidence to suggest that animals make genetically informed decisions about their mating partners, we understand relatively little about the sensory mechanisms informing these decisions. Here, we investigate whether cuticular hydrocarbons, chemical compounds found on the cuticle of most terrestrial arthropods, provide a means of discerning genetic similarity during mate choice in the cricket, Teleogryllus oceanicus. We found that individuals preferentially mated with partners who share more dissimilar cuticular hydrocarbon profiles and that similarity in cuticular hydrocarbon profiles between mating pairs correlated with their genetic similarity. Our results provide good evidence that cuticular hydrocarbon profiles offer a means of assessing genetic compatibility in T. oceanicus, enabling individuals to choose their most genetically suitable mate.  相似文献   

8.
    
  相似文献   

9.
In insect parasitoids, mating strategy depends on mate availability and is influenced by the spatial and temporal emergence patterns of adults. For quasi-gregarious species, simultaneous emergence favors local mating and reduces search costs for partners while increasing the risk of inbreeding, particularly when only one female parasitizes the initial host patch. Consequently, in inbreeding sensitive species, mating on the place of adult emergence (patch mating) between siblings should be counter selected. In practice, the timing of male and female emergence and of their dispersal influences mate availability and can limit on patch mating. To test the role of these two factors, we analyzed the daily distribution of emergence and patch residence time of a cohort in the aphid parasitoid Aphidius matricariae (Hymenoptera: Braconidae). We observed that adult emergence is concentrated on the morning with males emerging on average before females with some overlaps. A more precise evaluation of emergence pattern within a brood suggests that brothers and sisters rarely emerge at the same time and rapid dispersal of males and females favors off-patch mating. The relationships between timing of emergence including differences between sex and consequences on inbreeding probability in these species are thus discussed.  相似文献   

10.
    
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection.  相似文献   

11.
    
Natal philopatry is expected to limit gene flow and give rise to fine-scale spatial genetic structure (SGS). The banner-tailed kangaroo rat ( Dipodomys spectabilis ) is unusual among mammals because both sexes are philopatric. This provides an opportunity to study patterns of local SGS faced by philopatric and dispersing animals. We evaluated SGS using spatial genetic autocorrelation in two D. spectabilis populations (Rucker and Portal) over a 14-year temporal series that covered low, medium, and high population densities. Significantly positive autocorrelation values exist up to 800 m at Rucker and 400 m at Portal. Density was negatively associated with SGS (low >medium >high), and suggests that increases in density are accompanied by greater spatial overlap of kin clusters. With regard to sex-bias, we find a small but significant increase in the SGS level of males over females, which matches the greater dispersal distances observed in females. We observed variation in SGS over the ecological time scale of this study, indicating genetic structure is temporally labile. Our study is the first temporal exploration of the influence of density and sex on spatial genetic autocorrelation in vertebrate populations. Because few organisms maintain discreet kin clusters, we predict that density will be negatively associated with SGS in other species.  相似文献   

12.
A growing number of studies highlight the nontransitive properties of ejaculates when they are in competition to fertilize a female's eggs. Increasingly, these studies suggest that postcopulatory processes act as a filter against sperm from closely related males or those with similar genotypes, limiting the deleterious effects of inbreeding on offspring fitness. We investigated the potential for such postcopulatory mechanisms of inbreeding avoidance in the guppy (Poecilia reticulata), a promiscuous livebearing fish. We used artificial insemination as a method of delivering to a female the combined ejaculates from a first cousin (relatedness coefficient r = 0.125) and an unrelated male. This method of sperm delivery controls behavioral processes of pre- and postcopulatory female choice, which can bias paternity toward unrelated males. Our genetic analysis revealed no effect of parental relatedness on paternity outcomes. The observed mean paternity share for related males (0.47) and associated variance did not differ significantly from an expected binomial distribution that assumes no biased use of sperm with respect to relatedness (0.5). Although our data provide no evidence for postcopulatory mechanisms of inbreeding avoidance, the ability of female guppies to influence ejaculate transfer and retention offers an alternative and easily testable mechanism of inbreeding avoidance in this species.  相似文献   

13.
The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.  相似文献   

14.
    
Multiple mating is thought to provide an opportunity for females to avoid the costs of genetic incompatibility by postcopulatory selection of compatible sperm haplotypes. Few studies have tested the genetic incompatibility hypothesis directly. Here we experimentally manipulated the compatibility of females with their mates using the gryllid cricket Teleogryllus oceanicus. We recorded the hatching success of eggs laid by females mated with two nonsibling males, two siblings, or one nonsibling male and one sibling. In contrast with two previous studies on crickets that have adopted this approach, the hatching success of eggs did not differ between females mated with two full siblings and females mated with two unrelated males, indicating that embryo viability was not a cost of inbreeding in this species. We assigned paternity to offspring produced by females mated to both a sibling and a nonsibling male using microsatellite markers. As in previous studies of this species, we were unable to detect any difference in the proportion of offspring sired by the 1st and the 2nd male to mate with a female when females were unrelated to their mates. However, in our experimental matings the proportion of offspring sired by the nonsibling male depended on his sequence position. Paternity was biased toward the nonsibling male when he mated first. Our data show that molecular analyses of paternity are essential to detect subtle mechanisms of postcopulatory sexual selection.  相似文献   

15.
16.
    
The helmeted guinea fowl Numida meleagris belongs to the order Galliformes. Its natural range includes a large part of sub‐Saharan Africa, from Senegal to Eritrea and from Chad to South Africa. Archaeozoological and artistic evidence suggest domestication of this species may have occurred about 2,000 years BP in Mali and Sudan primarily as a food resource, although villagers also benefit from its capacity to give loud alarm calls in case of danger, of its ability to consume parasites such as ticks and to hunt snakes, thus suggesting its domestication may have resulted from a commensal association process. Today, it is still farmed in Africa, mainly as a traditional village poultry, and is also bred more intensively in other countries, mainly France and Italy. The lack of available molecular genetic markers has limited the genetic studies conducted to date on guinea fowl. We present here a first‐generation whole‐genome sequence draft assembly used as a reference for a study by a Pool‐seq approach of wild and domestic populations from Europe and Africa. We show that the domestic populations share a higher genetic similarity between each other than they do to wild populations living in the same geographical area. Several genomic regions showing selection signatures putatively related to domestication or importation to Europe were detected, containing candidate genes, most notably EDNRB2, possibly explaining losses in plumage coloration phenotypes in domesticated populations.  相似文献   

17.
    
Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post‐copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post‐copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post‐copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post‐copulatory inbreeding avoidance might cause functional redundancy (i.e. ‘degeneracy’) potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual‐based modelling to quantify evolution of interacting precopulatory and post‐copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post‐copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower‐cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post‐copulatory inbreeding avoidance, but fixed post‐copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post‐copulatory inbreeding avoidance is precluded or costly, and evolution of post‐copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry.  相似文献   

18.
    
Although some African rhinoceros populations are currently increasing, others are critically endangered. Even healthy populations are extensively managed in the wild and in captivity. While political and demographic considerations are of primary concern, many decisions are made in the name of genetic management. Such decisions should be informed by a full understanding of the multiple meanings of inbreeding and effective population size. In this essay, we examine inbreeding and effective size of wild and captive populations of African rhinoceroses. We conclude by showing how misunderstanding of effective size and Franklin’s 50/500 rule can make a crucial difference in informing management decisions.  相似文献   

19.
A balance must be maintained between the proportion of individuals dispersing and the proportion remaining philopatric such that inbreeding and resource competition are minimized. Yet the relative importance of dispersal and philopatric behaviour is uncertain, especially for species with complex social systems. We examine the influence of dispersal on genetic relationships of a white-nosed coati ( Nasua narica : Procyonidae) population from Panama. Field studies of the coati indicate a social system in which all females are highly philopatric and live in bands while all adult males become solitary at maturity, but do not disperse from the home range of their natal band. Based on analyses of multilocus DNA fingerprints, we confirm that female philopatry is the rule, long-distance dispersal is rare, and that relatedness between most bands is low. However, some new bands result from fission events and these bands retain relatively high relatedness to one another for several years. Adult males inhabiting the home range of a band are closely related to band members. In contrast, males and band members whose ranges do not overlap are unrelated or only slightly related. Adult males are also more closely related to other males whose home ranges they overlap extensively than to males whose home ranges they overlap only slightly. These results indicate that males initially disperse from their natal bands to reduce resource competition and not to avoid inbreeding. Inbreeding avoidance, if it occurs, results from more extensive range movements by males during the mating season.  相似文献   

20.
About 10 per cent of birds'' eggs fail to hatch, but the incidence of failure can be much higher in endangered species. Most studies fail to distinguish between infertility (due to a lack of sperm) and embryo mortality as the cause of hatching failure, yet doing so is crucial in order to understand the underlying problem. Using newly validated techniques to visualize sperm and embryonic tissue, we assessed the fertility status of unhatched eggs of five endangered species, including both wild and captive birds. All eggs were classified as ‘infertile’ when collected, but most were actually fertile with numerous sperm on the ovum. Eggs of captive birds had fewer sperm and were more likely to be infertile than those of wild birds. Our findings raise important questions regarding the management of captive breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号