首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment’s ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active nutrient recycling. This information is needed to improve our understanding on nutrient cycling in shallow seas where the dead zones are continuously spreading worldwide.  相似文献   
2.

Background

External nutrient discharges have caused eutrophication in many estuaries and coastal seas such as the Baltic Sea. The sedimented nutrients can affect bacterial communities which, in turn, are widely believed to contribute to release of nutrients such as phosphorus from the sediment.

Methods

We investigated relationships between bacterial communities and chemical forms of phosphorus as well as elements involved in its cycling in brackish sediments using up-to-date multivariate statistical methods. Bacterial community composition was determined by terminal restriction fragment length polymorphism and cloning of the 16S rRNA gene.

Results and Conclusions

The bacterial community composition differed along gradients of nutrients, especially of different phosphorus forms, from the estuary receiving agricultural phosphorus loading to the open sea. This suggests that the chemical composition of sediment phosphorus, which has been affected by riverine phosphorus loading, influenced on bacterial communities. Chemical and spatial parameters explained 25% and 11% of the variation in bacterial communities. Deltaproteobacteria, presumptively sulphate and sulphur/iron reducing, were strongly associated to chemical parameters, also when spatial autocorrelation was taken into account. Sulphate reducers correlated positively with labile organic phosphorus and total nitrogen in the open sea sediments. Sulphur/iron reducers and sulphate reducers linked to iron reduction correlated positively with aluminium- and iron-bound phosphorus, and total iron in the estuary. The sulphate and sulphur/iron reducing bacteria can thus have an important role both in the mineralization and mobilization of nutrients from sediment.

Significance

Novelty in our study is that relationships between bacterial community composition and different phosphorus forms, instead of total phosphorus, were investigated. Total phosphorus does not necessarily bring out interactions between bacteria and phosphorus chemistry since proportions of easily usable mobile (reactive) phosphorus and immobile phosphorus forms in different sediments can vary. Our study suggested possible feedbacks between different forms of phosphorus and bacterial community composition.  相似文献   
3.
A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
The vertical distribution of various phosphorus (P) forms and their relation to physico-chemical properties of estuary sediment material were studied to better understand the potential release and burial of P. Core samples were taken from two dissimilar estuaries in the Baltic Sea: one in the Archipelago Sea (AS) and one in the Gulf of Finland (GoF). The P reserves were characterized by a sequential extraction procedure including the analysis of simultaneously dissolved elements in two extraction steps. The sediment material was also analysed for particle size distribution and total elements. In addition, several environmental variables were determined. The occurrence of the various forms of P varied with sediment depth among different sites. Reductant soluble, iron (Fe) bound P was the most dynamically changing P form in the sediment, while P bound to other metal oxides and apatite-P were the most stable fractions. High sedimentation rate was a dominating factor for sediment P burial. In addition, the content of organic matter, the amount of erosion-transported sorption components, and the oxygen (O2) conditions in the near-bottom water were important determinants of the behaviour of sediment P. The results indicate that, over the long term, both estuaries have acted as sinks for deposited P and restricted the transport of P to the AS and the open GoF, thereby partly alleviating the eutrophication process.  相似文献   
5.
The stability constants of complexes of 3', 5'-cyclic AMP with Mg2+, Ca2+, Mn2+, Ni2+ and Co2+ were estimated at 30 degrees C in solutions of ionic strength about 0.15 containing about 130 mM K+ or tetramethylammonium ions. Values between 13 and 22 M-1 were obtained, indicating that only about 2% of cyclic AMP is present as metal complexes in vivo, but that at commonly used in vitro concentrations of 10 mM bivalent metal ions, 10--20% of cyclic AMP is present as metal complexes. The possible significance of these metal complexes, for example as competitive inhibitors, is discussed.  相似文献   
6.
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.  相似文献   
7.

Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most.

  相似文献   
8.
Serum samples from 201 drivers who presented at emergency departments within six hours after being injured in a road accident and 325 control drivers selected randomly at petrol stations were screened for drugs by combined thin-layer and gas chromatography. Blood alcohol concentrations were also measured, and a questionnaire on the subjects'' state of health and use of drugs administered. At interview 30 patients (15%) and 44 controls (13%) said that they had taken drugs in the previous 24 hours. Four patients (2%) and six controls (2%) said that they had taken psychotropic drugs, but serum analysis detected psychotropic drugs in 10 patients (5%) and eight controls (2.5%). Diazepam was found in 16 of the 18 subjects in whom psychotropic drugs were detected. Alcohol was detected in 30 patients (15%) and three controls (1%). Drug use appeared to be somewhat lower in Finland than in other Western countries, and illness to be a more important traffic hazard than drugs in general. Interview was not a reliable method of establishing whether drivers had taken psychotropic drugs. Taking diazepam may increase the risk of being involved in a traffic accident, but alcohol was the most powerful risk factor.  相似文献   
9.
The hydrolysis of adenosine 3':5'-monophosphate by the high Km cyclic nucleotide phosphodiesterase of bakers' yeast was studied over a range of temperature and pH at I = 0.17. The effects of ionic strength and MgCl2 concentration were studied at pH 7.7 and 30 degrees C. Km and Vmax were insensitive to changes in the MgCl2 concentration between 1 and 30 mM, implying that this enzyme (which does not require free divalent metal ions) does not discriminate between free cyclic AMP- and the Mg-cyclic AMP+ complex. Vmax decreased below pH 6.8 because of protonation of a group required in the basic form in the enzyme x substrate complex. On the basis of its pK (5.46 at 30 degrees C) and delta H (23 kJ/mol) this group was tentatively identified as imidazole. Vmax/Km decreased above pH 6.8 because of ionization of a group required in the acid form in the free enzyme, with a pK of 7.88 at 30 degrees C and a delta H of about 13 kJ/mol. Several possibilities exist for the identity of this group, the most likely being a second imidazole, sulfhydryl, or a water molecule bonded to tightly bound zinc. At pH 7.90, log Vmax and log Km both changed linearly with 1/T (between 12 degrees C and 37 degrees C) with enthalpies of 47 and 55 kJ/mol, respectively. Consequently, at low enough cyclic AMP concentration, the rate of reaction at pH 7.90 decreases slightly when the temperature is increased. This is also true at higher pH, but in the physiological pH range (6.4 to 7.5) Vmax/Km and, therefore, the rate of reaction at very low cyclic AMP concentration were nearly independent of temperature. Under physiological conditions, the Km approaches the upper limit of in vivo cyclic AMP concentrations in yeast, and at normal in vivo cyclic AMP concentrations the pH optimum is within or below the physiological range of pH in yeast.  相似文献   
10.
The chemical composition and vertical distribution of phosphorus (P) in poorly oxygenated sediments in a continuum extending from the open Baltic Sea towards an organic-rich inner bay were characterized by sequential extraction to examine the potential for release of sediment P. The chemical composition of P was related to chemical and physical characteristics of the sediments and the chemistry of pore water and near-bottom water to better understand the behaviour of P. Sediment P increased towards the inner bay, and the concentration of organic matter appeared to dictate its composition: the dominance of apatite-P turned to dominance of organic P (OP). Sediment P burial and, thus, release from sediment P reserves varied depending on the chemical composition of P. Dissolved species at the sediment–water interface suggested fluctuating redox conditions that affect P binding at short time scale. Redox-sensitive, iron (Fe)-bound P was usually relatively low because of poor oxygen (O2) conditions, which emphasized the role of OP in P release. The results indicate that, over the long term, the abundant organic P reserve may support a significant continuing P release from hypoxic sediments in the severely eutrophied Gulf of Finland (GoF) because capture of P into Fe oxyhydroxides at the sediment surface is restricted. The average long-term minimum annual rate of P release from poorly oxygenated sediments below about 60 m depth in the GoF was approximated on the basis of the vertical distribution of sedimentary P forms and estimates of sedimentation rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号