首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  1999年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有27条查询结果,搜索用时 343 毫秒
1.
The cerebral cortex is a multilayered tissue, with each layer differing in its cellular composition and connections. Axons from deep layer neurons project subcortically, many to the thalamus, whereas superficial layer neurons target other cortical areas. The mechanisms that regulate the development of this pattern of connections are not fully understood. Our experiments examined the potential of the thalamus to attract and/or select neurites from appropriate cortical layers. First, we cocultured murine cortical slices in close proximity to thalamic explants in collagen gels. The amount of neurite outgrowth from deep layer cells was enhanced by, but not attracted to, the thalamic explants. Second, we cocultured cortical slices in contact with thalamic or cortical explants to test for laminar specificity of connections. Specificity was apparent after culture for about a week, in that deep cortical layers contained the highest proportions of corticothalamic cells and superficial cortical layers contained the highest proportions of corticocortical cells. After shorter culture of only a few days, however, specificity was not apparent and there were larger numbers of corticothalamic projections from the superficial layers than after a week. To study how the early nonspecific pattern of corticothalamic connections was transformed into the more specific pattern, we labeled corticothalamic cells early, after 2 days, but let the cultures survive for 8 days. On day 8, the nonspecific pattern of early-labeled cells was still seen. We conclude that although the thalamus does not block the initial entry of inappropriate axons from the superficial layers, many of these axons are subsequently lost. This suggests that contact-mediated interactions between cortical axons and the thalamus allow cortical efferents from appropriate layers to be distinguished from those arising in inappropriate layers. This may contribute to the development of layer-specific cortical connections in vivo.  相似文献   
2.
Nutritional imbalance is one of the main sources of stress in both extant and extinct human populations. Restricted availability of nutrients is thought to disrupt the buffering mechanisms that contribute to developmental stability and canalization, resulting in increased levels of fluctuating asymmetry (FA) and phenotypic variance among individuals. However, the literature is contradictory in this regard. This study assesses the effect of prenatal nutritional stress on FA and among‐individual variance in cranial shape and size using a mouse model of maternal protein restriction. Two sets of landmark coordinates were digitized in three dimensions from skulls of control and protein restricted specimens at E17.5 and E18.5. We found that, by the end of gestation, maternal protein restriction resulted in a significant reduction of skull size. Fluctuating asymmetry in size and shape exceeded the amount of measurement error in all groups, but no significant differences in the magnitude of FA were found between treatments. Conversely, the pattern of shape asymmetry was affected by the environmental perturbation since the angles between the first eigenvectors extracted from the covariance matrix of shape asymmetric component of protein restricted and control groups were not significantly different from the expected for random vectors. In addition, among‐individual variance in cranial shape was significantly higher in the protein restricted than the control group at E18.5. Overall, the results obtained from a controlled experiment do not support the view of fluctuating asymmetry of cranial structures as a reliable index for inferring nutritional stress in human populations. Am J Phys Anthropol 154:544–553, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
3.
Hydrobiologia - Many of the world’s rivers are dammed, altering the physiology, behaviour, ecology and survival of fish. Integrative research has the potential to improve our understanding of...  相似文献   
4.
We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.  相似文献   
5.
Carbonic anhydrases (CA) play an important role in biomineralization from invertebrates to vertebrates. Previous experiments have investigated the role of CA in coral calcification, mainly by pharmacological approaches. This study reports the molecular cloning, sequencing, and immunolocalization of a CA isolated from the scleractinian coral Stylophora pistillata, named STPCA. Results show that STPCA is a secreted form of alpha-CA, which possesses a CA catalytic function, similar to the secreted human CAVI. We localized this enzyme at the calicoblastic ectoderm level, which is responsible for the precipitation of the skeleton. This localization supports the role of STPCA in the calcification process. In symbiotic scleractinian corals, calcification is stimulated by light, a phenomenon called "light-enhanced calcification" (LEC). The mechanism by which symbiont photosynthesis stimulates calcification is still enigmatic. We tested the hypothesis that coral genes are differentially expressed under light and dark conditions. By real-time PCR, we investigated the differential expression of STPCA to determine its role in the LEC phenomenon. Results show that the STPCA gene is expressed 2-fold more during the dark than the light. We suggest that in the dark, up-regulation of the STPCA gene represents a mechanism to cope with night acidosis.  相似文献   
6.
7.
Much current vision research is predicated on the idea--and a rapidly growing body of evidence--that visual percepts are generated according to the empirical significance of light stimuli rather than their physical characteristics. As a result, an increasing number of investigators have asked how visual perception can be rationalized in these terms. Here, we compare two different theoretical frameworks for predicting what observers actually see in response to visual stimuli: Bayesian decision theory and empirical ranking theory. Deciding which of these approaches has greater merit is likely to determine how the statistical operations that apparently underlie visual perception are eventually understood.  相似文献   
8.
Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1)) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1) kg(-1). Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号