首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Little is known about the behaviour patterns and swimming speed strategies of anadromous upriver migrating fish. We used electromyogram telemetry to estimate instantaneous swimming speeds for individual sockeye (Oncorhynchus nerka) and pink salmon (O. gorbuscha) during their spawning migrations through reaches which spanned a gradient in river hydraulic features in the Fraser River, British Columbia. Our main objectives were to describe patterns of individual-specific swim speeds and behaviours, identify swimming speed strategies and contrast these between sexes, species and reaches. Although mean swimming speeds did not differ between pink salmon (2.21 BL s–1) and sockeye salmon (1.60 BL s–1), sockeye salmon were over twice as variable (mean CV; 54.78) in swimming speeds as pink salmon (mean CV; 22.54). Using laboratory-derived criteria, we classified swimming speeds as sustained (<2.5 BL s–1), prolonged (2.5–3.2 BL s–1), or burst (>3.2 BL s–1). We found no differences between sexes or species in the proportion of total time swimming in these categories – sustained (0.76), prolonged (0.18), burst (0.06); numbers are based on species and sexes combined. Reaches with relatively complex hydraulics and fast surface currents had migrants with relatively high levels of swimming speed variation (e.g., high swimming speed CV, reduced proportions of sustained speeds, elevated proportions of burst speeds, and high rates of bursts) and high frequency of river crossings. We speculate that complex current patterns generated by river constrictions created confusing migration cues, which impeded a salmon's ability to locate appropriate pathways.  相似文献   

2.
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.  相似文献   

3.
溶氧水平对鲫鱼代谢模式的影响   总被引:3,自引:0,他引:3  
张伟  曹振东  付世建 《生态学报》2012,32(18):5806-5812
为了探讨水体溶氧水平对鲫幼鱼(Carassius carassius)运动、消化能力及其交互作用的影响,在(25.0±0.5)℃温度条件下,测定了8(饱和溶氧水平)、2和1mg/L溶氧水平下摄食(饱足摄食)和空腹组(空腹2 d)鲫鱼的临界游泳速度(Ucrit)、运动前耗氧率(MO2pre-exercise)、活跃耗氧率(MO2active)和代谢范围(MS)。摄食诱导的耗氧率上升在各溶氧水平下无显著差异。在饱和溶氧水平下,摄食组和空腹组的Ucrit没有显著差异,但在1和2 mg/L条件下,摄食组的Ucrit显著低于空腹组(P<0.05)。在饱和溶氧水平条件下,消化和运动诱导的耗氧率上升在各个游泳水平均能完全叠加,且摄食组鱼类与空腹组鱼类具有相似的MS和Ucrit和更高的MO2active,提示鲫鱼在常氧下为添加代谢模式。随着溶氧水平下降至2和1mg/L,呼吸能力(摄食组的MO2active)对溶氧水平下降较运动耗氧率更为敏感,消化诱导的耗氧率增加只能在较低游泳速度叠加,与空腹组鱼类比较,摄食组鱼类的MS和Ucrit显著下降,MO2active无显著差异,提示低氧下消化和运动对氧气需求竞争的加剧使其代谢模式转化为消化优先。  相似文献   

4.
Following a relatively large meal (2% body mass of dry pellets), intestinal blood flow in chinook salmon (Oncorhynchus tshawytscha) increased significantly, up to 81%, between 14 and 29 h postprandially. Also, 15 h postprandially, oxygen consumption (M(2)) was elevated by 128% compared with a measurement of routine M(2) made after 1 wk of fasting. The postprandial increase in MO(2) (the heat increment) was 33 micromol O(2) min(-1) kg(-1). Because intestinal blood flow is known to decrease during swimming activity in fish, we therefore tested the hypothesis that swimming fish would have to make a trade-off between maximum swimming activity and digestive activity by comparing the swimming performance and metabolic rates of fed and fasted chinook salmon. As expected, MO(2) increased exponentially with swimming velocity in both fed and fasted fish. Moreover, the heat increment was irreducible during swimming, such that MO(2) remained approximately 39 micromol O(2) min(-1) kg(-1) higher in fed fish than in fasted fish at all comparable swimming speeds. However, maximum M dot o2 was unaffected by feeding and was identical in both fed and fasted fish (approximately 250 micromol O(2) min(-1) kg(-1)), and, as a result, the critical swimming speed (U(crit)) was 9% lower in the fed fish. Three days after the fish were fed and digestion was completed, MO(2) and U(crit) were not significantly different from those measured in fasted fish. The ability of salmonids to maintain feeding metabolism during prolonged swimming performance is discussed, and it is suggested that reduced swimming performance may be due to postprandial sparing of intestinal blood to support digestion, thereby limiting the allocation of blood flow to locomotory muscles.  相似文献   

5.
锦鲫的摄食代谢与运动代谢及其相互影响   总被引:1,自引:0,他引:1  
为了探讨锦鲫(Carassius auratus)幼鱼摄食后特殊动力作用(SDA)的变化特征及运动代谢与摄食代谢之间的相互影响,实验首先灌喂锦鲫4%体重的饲料和等体积的纤维素(湿重),测定灌喂前后的耗氧率;另设灌喂饲料、灌喂纤维素、空腹组(对照组)3个组,测定3组的临界游泳速度(Ucrit)和运动耗氧率(MO2);然后在70%、0%临界游泳速度下,分别测定饱足摄食组和空腹组的耗氧率。结果显示:1灌喂饲料后代谢率快速上升,达到峰值后又迅速下降,代谢时间较短,没有一个相对稳定的平台期,灌喂纤维素后代谢率没有显著性变化(P0.05)。提示锦鲫幼鱼的特殊动力作用功率曲线为一个典型的"三角型"模型,且在特殊动力作用总耗能中,生化特殊动力作用占特殊动力作用总耗能的绝大部分,而机械特殊动力作用只占特殊动力作用的极少部分。2锦鲫幼鱼在摄食后临界游泳速度显著下降(P0.05),代谢率显著升高(P0.05)。摄食后的运动过程中,代谢率从摄食开始到代谢率回落至空腹组代谢的标准误范围内的首个数据所对应的时间长度均为6.5 h,且摄食代谢无显著性差异。提示,对锦鲫幼鱼来说,摄食代谢降低了其运动能力,而运动代谢并没有影响摄食代谢。  相似文献   

6.
1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species. 5. We hypothesize that divergent digestive strategies, which are common and well documented among terrestrial vertebrates, may be an important but overlooked aspect of adaptive strategies of juvenile salmonids, and fish in general.  相似文献   

7.
When negatively buoyant, such as by increased pressure or loss of swimbladder gas, kokanee and sockeye salmon ( Oncorhynchus nerka ) attempt to swim upward by increased use of the pectoral fins. This response is termed compensatory swimming. Prior to initial filling of the swimbladder, sockeye fry showed no behavioural response to pressures above atmospheric. Following air-gulping at the surface and bladder inflation, kokanee and sockeye fry responded to increased pressure by assuming a more vertical position and by beating the pectoral fins more rapidly. In young sockeye this response occurred over the pressure range of atmospheric to 20 lb/in2, and the effect of this behaviour would be to distribute these fish in the upper 14 m of the lacustrine environment. Fingerling kokanee showed a more gradual increase in compensatory swimming over the range of pressure equivalent to depths of 0–50 m. The behaviour of yearling kokanee would tend to concentrate these fish in the upper 30 m. Sockeye older than 1 year responded to negative buoyancy with increased horizontal swimming whilst planing upward on the pectoral fins. Depth distribution postulated on the basis of pressure-induced compensatory swimming is consistent with the known vertical distribution of kokanee and sockeye salmon.  相似文献   

8.
Surgical methods developed to implant EMG (electromyogram) transmitters in Atlantic salmon Salmo salar were tested to calibrate electromyograms from axial red musculature to swimming speed in a swim speed chamber, and to compare electromyograms of fish from two stocks (Lone and Imsa). Ten Lone and eight Imsa salmon were equipped with internal EMG transmitters. Surgical procedures were acceptable, with 100% survival of all implanted fish during the study. It was possible to calibrate EMG pulse intervals to swimming speed in 14 of the 18 salmon run in the swim speed chamber ( r2= 0·35-0·76 for individuals, 0·63 for pooled data). Individuals differed in their EMG resting levels (EMGs recorded at 0·5 ms−1), and so higher correlations were obtained between swimming speed and an activity index (EMG pulse intervals at different speeds/EMG resting levels) (pooled data, r2 =0·75). The linear relationship between swimming speed and EMG pulse intervals differed significantly between the two stocks ( P <0·05). This successful calibration of EMGs to swimming speed opens the possibility of calibrating EMGs to oxygen consumption and the measurement of the metabolic costs of activity in field experiments.  相似文献   

9.
In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg−1 h−1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg−1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies.  相似文献   

10.
Little research has examined individual variation in migration speeds of Pacific salmon (Oncorhynchus spp.) in natural river systems or attempted to link migratory behavior with physiological and energetic status on a large spatial scale in the wild. As a model, we used three stocks of summer-run sockeye salmon (Oncorhynchus nerka) from the Fraser River watershed, British Columbia, to test the hypothesis that individual variation in migration speed is determined by a combination of environmental factors (i.e., water temperature), intrinsic biological differences (sex and population), and physiological and energetic condition. Before the freshwater portion of the migration, sockeye salmon (Quesnel, Chilcotin, and Nechako stock complexes) were captured in Johnstone Strait ( approximately 215 km from river entry), gastrically implanted with radio transmitters, and sampled for blood, gill tissue, and energetic status before release. Analyses focused solely on individuals that successfully reached natal subwatersheds. Migration speeds were assessed by an extensive radiotelemetry array. Individuals from the stock complex that migrated the longest distance (Nechako) traveled at speeds slower than those of other stock complexes. Females traveled slower than males. An elevated energetic status of fish in the ocean was negatively correlated with migration speed in most river segments. During the transition from the ocean to the river, migration speed was negatively correlated with mean maximum water temperature; however, for the majority of river segments, it was positively correlated with migration speed. Physiological status measured in the ocean did not explain among-individual variability in river migration speeds. Collectively, these findings suggest that there could be extensive variation in migration behavior among individuals, sexes, and populations and that physiological condition in the ocean explained little of this variation relative to in-river environmental conditions and energetic status. Interestingly, individual fish generally retained their rank in swimming speed across different segments, except when transiting a challenging canyon midway during the migration.  相似文献   

11.
Maturing adult sockeye salmon Oncorhynchus nerka were intercepted while migrating in the ocean and upstream in freshwater over a combined distance of more than 1,300 km to determine physiological and endocrine changes associated with ionoregulation. Sockeye migrating through seawater and freshwater showed consistent declines in gill Na+/K+-ATPase (NKA) activity, plasma osmolality and plasma chloride concentration. In contrast, plasma sodium concentration became elevated in seawater as fish approached the river mouth and was then restored after sockeye entered the river. Accompanying the movement from seawater to freshwater was a significant increase in mRNA for the NKA α1a subunit in the gill, with little change in the α1b subunit. Potential endocrine signals stimulating the physiological changes during migration were assessed by measuring plasma cortisol and prolactin (Prl) concentrations and quantifying mRNA extracted from the gill for glucocorticoid receptors 1 and 2 (GR1 and GR2), mineralocorticoid receptor (MR), growth hormone 1 receptor (GH1R), and prolactin receptor (PrlR). Plasma cortisol and prolactin concentrations were high in seawater suggesting a preparatory endocrine signal before freshwater entry. Generally, the mRNA expression for GR1, GR2 and MR declined during migration, most notably after fish entered freshwater. In contrast, PrlR mRNA increased throughout migration, particularly as sockeye approached the spawning grounds. A highly significant association existed between gill PrlR mRNA and gill NKA α1a mRNA. GH1R mRNA also increased significantly, but only after sockeye had migrated beyond tidal influence in the river and then again just before the fish reached the spawning grounds. These findings suggest that cortisol and prolactin stimulate ionoregulation in the gill as sockeye salmon adapt to freshwater.  相似文献   

12.
Juvenile cod (Gadus morhua) were made to swim in a tunnel respirometer to determine the oxygen consumption during swimming at different speeds. Results were compared with measurements of standard and active metabolic rates in static respirometers before and after intense exercise. The oxygen consumption at maximum sustainable swimming speed was considerably lower than the peak oxygen consumption following exhausting exercise. It is suggested that these fish have a poorly developed system of aerobic (red) locomotor muscles which do not normally make a major demand upon oxygen consumption. Apparent specific dynamic action following feeding and repayment of oxygen debt following anaerobic exercise can each give rise to greater rates of oxygen consumption. Following exhausting exercise there is a delay of about 1 h before oxygen consumption reaches a peak level some 40% higher than the peak level observed during sustained swimming.  相似文献   

13.
Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na+ concentration was significantly lower in unsuccessful fish ( P < 0·05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka . Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure.  相似文献   

14.
To test whether the effects of temperature on the metabolic mode changed among different fish species, we investigated the specific dynamic action (SDA) and swimming performance of fasting and fed fish at 15 and 25°C in three juvenile Cyprinidae fish species: goldfish (Carassius auratus), common carp (Cyprinus carpio) and qingbo (Spinibarbus sinensis). Both taxon and temperature had significant effects on the resting oxygen consumption rate (M˙O(rest)), SDA and swimming performance (p<0.05). In addition, the effect of temperature differed significantly among the different species (interaction effect, p<0.05). Under the low temperature condition, digestion had no effect on either critical swimming speed (U(crit)) or the active MO(2) (MO(active)) for all fish species (additive metabolic mode). When the temperature was increased from 15 to 25°C, the metabolic scope (MS) for digestion increased approximately 182, 49 and 17%, and the MS for locomotion increased approximately 129, 58 and 138% in goldfish, common carp and qingbo, respectively. The total metabolic demands for both digestion and locomotion (i.e., the sum of digestive MS and locomotive MS) increased approximately 143, 56 and 112% in goldfish, common carp and qingbo, respectively. The total MS for both digestion and locomotion (the difference between MO(active) in fed fish and MO(rest) in fasting fish) increased approximately 106, 58 and 78% in goldfish, common carp and qingbo, respectively. Thus, the MS for locomotion in fed goldfish decreased due to the large increase in digestive function at the high temperature, and the U(crit) of fed goldfish decreased by 11% compared to that of fasting fish (p<0.05) (digestion-priory metabolic mode). The metabolic mode of qingbo changed to locomotion-priority mode, as illustrated by the large increase in locomotive MS in response to the increase in temperature. In the common carp, temperature had no effect on metabolic mode as illustrated by the parallel increases in cardio-respiratory capacity and metabolic capacity of digestive and locomotive organs. A discussion on the changes in metabolic mode in response to temperature and its possible relationship with the metabolic characteristics of a given fish species was also documented in this paper.  相似文献   

15.
Novel field measurements of critical swimming speed ( U crit) and oxygen uptake (  M o2) in three species of adult Pacific salmon Oncorhynchus spp. up to 3·5 kg in body mass were made using two newly designed, mobile Brett-type swim tunnel respirometers sited at a number of field locations in British Columbia, Canada. Measurements of U crit, which ranged from 1· 68 to 2·17 body lengths s−1, and maximum M o2, which ranged from 8·74 to 12·63 mg O2 kg−1 min−1 depending on the species and field location, were judged to be of similar quality when compared with available data for laboratory-based studies. Therefore high quality respirometry studies were possible in the field using adult wild swimming salmonids. In addition, the recovery of wild adult Pacific salmon from the exhaustive U crit swim test was sufficiently rapid that swimming performance could be repeated with <1 h of recovery time between the termination of the initial swim test and the start of the second test. Moreover, this repeat swimming performance was possible without routine M o2 being reestablished. This result suggests that wild adult salmon are capable of carrying a moderate excess post-exercise oxygen consumption without adversely affecting U crit, maximum M o2 or swimming economy. Such capabilities may be extremely important for timely migratory passages when salmonids face repetitive hydraulic challenges on their upstream migration.  相似文献   

16.
Some Pacific salmon populations have been experiencing increasingly warmer river temperatures during their once-in-a-lifetime spawning migration, which has been associated with en route and prespawn mortality. The mechanisms underlying such temperature-mediated mortality are poorly understood. Wild adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon were used in this study. The objectives were to investigate the effects of elevated water temperature on mortality, final maturation, and blood properties under controlled conditions that simulated a "cool" (13°C) and "warm" (19°C) freshwater spawning migration. After 10 d at 13°C, observed mortality was 50%-80% in all groups, which suggested that there was likely some mortality associated with handling and confinement. Observed mortality after 10 d at 19°C was higher, reaching ≥98% in male pink salmon and female pink and sockeye salmon. Thus, male sockeye salmon were the most thermally tolerant (54% observed mortality). Model selection supported the temperature- and sex-specific mortality patterns. The pink salmon were closer to reproductive maturation and farther along the senescence trajectory than sockeye salmon, which likely influenced their survival and physiological responses throughout the experiment. Females of both species held at 19°C had reduced plasma sex steroids compared with those held at 13°C, and female pink salmon were less likely to become fully mature at 19° than at 13°C. Male and female sockeye salmon held at 19°C had higher plasma chloride and osmolality than those held at 13°C, indicative of a thermally related stress response. These findings suggest that sex differences and proximity to reproductive maturity must be considered when predicting thermal tolerance and the magnitude of en route and prespawn mortality for Pacific salmon.  相似文献   

17.
This study compared the critical swimming speed (Ucrit) and endurance performance of three Australian freshwater fish species in different swim‐test apparatus. Estimates of Ucrit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free‐surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory‐based measures to the design of fish passage infrastructure.  相似文献   

18.
Monitoring the physiological status and behaviour of free-swimming fishes remains a challenging task, although great promise stems from techniques such as biologging and biotelemetry. Here, implanted data loggers were used to simultaneously measure heart rate (f H), visceral temperature, and a derivation of acceleration in two groups of wild adult sockeye salmon (Oncorhynchus nerka) held at two different water speeds (slow and fast). Calibration experiments performed with individual fish in a swim tunnel respirometer generated strong relationships between acceleration, f H, tail beat frequency and energy expenditure over a wide range of swimming velocities. The regression equations were then used to estimate the overall energy expenditure of the groups of fish held at different water speeds. As expected, fish held at faster water speeds exhibited greater f H and acceleration, and correspondingly a higher estimated energy expenditure than fish held at slower water speeds. These estimates were consistent with gross somatic energy density of fish at death, as determined using proximate analyses of a dorsal tissue sample. Heart rate alone and in combination with acceleration, rather than acceleration alone, provided the most accurate proxies for energy expenditure in these studies. Even so, acceleration provided useful information on the behaviour of fish and may itself prove to be a valuable proxy for energy expenditure under different environmental conditions, using a different derivation of the acceleration data, and/or with further calibration experiments. These results strengthen the possibility that biologging or biotelemetry of f H and acceleration may be usefully applied to migrating sockeye salmon to monitor physiology and behaviour, and to estimate energy use in the natural environment.  相似文献   

19.
A swimming speed of 0.4 meters per second (m s(-1)) is the minimal speed for European female silver eels to reach the spawning sites in the Sargasso Sea in time. As silver eels cease feeding when they start their oceanic migration, the cost of transport (COT) should be minimised and the swimming speed optimised to attain the highest energetic efficiency. In this study, we have investigated the optimal swimming speed (U(opt)) of silver eels since U(opt) may be higher than the minimal swimming speed and is more likely to resemble the actual cruise speed. A variety of swimming tests were performed to compare endurance swimming between farmed eels and wild eels, both in freshwater and in seawater. The swimming tests were run with 101 silver female eels (60-96 cm, 400-1500 g) in 22 Blazka-type swim tunnels in a climatised room at 18 degrees C with running freshwater or seawater. Tests were run at 0.5-1.0 m s(-1) with increments of 0.1 m s(-1), and either 2 h or 12 h intervals. Remarkably, both tests revealed no changes in oxygen consumption (M O2) and COT over time. U(opt) values ranged between 0.61 and 0.68 m s(-1) (0.74-1.02 BL s(-1)) for the different groups and were thus 53-70% higher than the minimal speed. At U(opt), the COT was 37-50 mg O2 kg(-1) km(-1). These relatively very low values confirm our earlier observations. COT values in seawater were about 20% higher than in freshwater. Assuming that migrating female silver eels cruise at their U(opt), they will be able to cover the distance to the Sargasso Sea in 3-4 months, leaving ample time for final maturation and finding mates.  相似文献   

20.
The influence of surgical implantation of an acoustic transmitter on the swimming performance, growth and survival of juvenile sockeye salmon Oncorhynchus nerka and Chinook salmon Oncorhynchus tshawytscha was examined. The transmitter had a mass of 0·7 g in air while sockeye salmon had a mass of 7·0–16·0 g and Chinook salmon had a mass of 6·7–23·1 g (a transmitter burden of 4·5–10·3% for sockeye salmon and 3·1–10·7% for Chinook salmon). Mean critical swimming speeds (Ucrit) for Chinook salmon ranged from 47·5 to 51·2 cm s?1 [4·34–4·69 body lengths (fork length, LF) s?1] and did not differ among tagged, untagged and sham‐tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46·1 cm s?1 (4·1 LF s?1), which was c. 5% less than the mean Ucrit for control and sham fish (both groups were 48·6 cm s?1 or 4·3 LF s?1). A laboratory evaluation determined that there was no difference in LF or mass among treatments (control, sham or tag) either at the start or at the end of the test period, suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon held under laboratory conditions died from the influence of surgical implantation of transmitters. In contrast, this study found that the 21 day survival differed between tagged and control groups of Chinook salmon, although this result may have been confounded by the poor health of Chinook salmon treatment groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号