首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
  1978年   1篇
排序方式: 共有95条查询结果,搜索用时 531 毫秒
1.
Summary The use of reticulated polyurethane foam as a support material for the immobilization of methanogenic associations and its application to the anaerobic treatment of fine particulate solid wastes was investigated. The colonization of polyurethane support particles in a continuous upflow reactor fed on a mixture of acetate, propionate and butyrate, was both rapid and dense. The combination of rumen microorganisms and colonized support particles in a two-phase digester resulted in an efficient anaerobic decomposition of papermill sludge.  相似文献   
2.
Alterations in myocardial energy substrate utilization contribute to the development of cardiomyopathic changes in insulin-dependent and non-insulin-dependent diabetic rats. Energy substrate utilization and contractile function, however, have not been characterized in insulin-resistant diabetes. In this study, we studied these parameters in the insulin-resistant obese JCR:LA-cp rat homozygous for the corpulent gene (cp/cp). Homozygous (+/+) or heterozygous (+/cp) lean non-insulin-resistant rats were used as controls. Isolated working hearts from cp/cp and lean control rats were perfused with Krebs-Henseleit buffer containing either 11 mM [U-14C]glucose and 0.4 mM palmitate or 11 mM glucose and 0.4 mM [1-14C]palmitate. Unlike control hearts, hearts from cp/cp rats were found to require high doses of insulin and Ca2+ concentrations of less than or equal to 1.75 mM to maintain mechanical function. In the presence of 2,000 microU/ml insulin, contractile function from cp/cp rat hearts was not depressed in the presence of either 1.25 or 1.75 mM Ca2+. Steady-state glucose oxidation rates in hearts perfused with 1.25 mM Ca2+ and 2,000 microU/ml insulin were 811 +/- 86 (SE) and 612 +/- 51 nmol.min-1.g dry wt-1 in cp/cp and control rats, respectively. Palmitate oxidation was 307 +/- 47 and 307 +/- 47 nmol.min-1.g dry wt-1 in cp/cp and lean control hearts, respectively. Under these perfusion conditions, 40% of myocardial ATP production was derived from glucose, whereas 60% was derived from palmitate in both cp/cp and control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
We have previously demonstrated that high-affinity PGE receptors are present on purified cardiac sarcolemmal (SL) membrane from bovine heart (Lopaschuk et al. (1989) Circ. Res. 65, 538-545). In this study we determined whether PGI2 receptors are also present on the cardiac SL membrane. Due to the extreme lability of prostacyclin (PGI2) under physiological conditions, the PGI2 analogue, Iloprost was substituted for PGI2. 3H-Iloprost specifically bound to two sites on the SL membrane; one of high affinity (Kd = 0.3 nM, Bmax = 97.0 fmol/mg SL), and one of lower affinity (Kd = 20.6 nM, Bmax = 1589 fmol/mg SL). Competition studies demonstrated that the concentrations of PGE2 and PGE1 necessary to displace 50% of the specific binding of 20 nM [3H]Iloprost on cardiac SL were 15-fold lower than the concentrations of unlabelled Iloprost necessary to displace 50% of binding. In contrast, a 15-fold higher concentration of unlabelled Iloprost was needed to displaced 50% of specific binding of 2 nM [3H]PGE2 compared to the concentrations of PGE1 or PGE2 required to displace 50% of [3H]PGE2 binding. In summary, our results indicate that a prostacyclin receptor is present on the cardiac sarcolemmal membrane, and that PGI2 competes for the same receptor site as PGE2.  相似文献   
4.
5.
We examined the Na+/H+ exchanger message in isolated perfused rabbit hearts using Northern blot analysis with cDNA encoding for the rabbit cardiac Na+/H+ exchanger. A cDNA probe from the coding region of the rabbit myocardial Na+/H+ exchanger hybridized to mRNA of 5 kb under high stringency, and to a second 3.8 kb mRNA species under low stringency. When Northern blots were re-probed with a section of the 3′-untranslated region of the cDNA, the 5 kb message was apparent while the smaller 3.8 kb message was not. If isolated working rabbit hearts were subjected to ischemia we observed increases in the 3.8 kb message. Overall, the results show that a 3.8 kb mRNA product, which is homologous to the amiloride sensitive Na+/H+ exchanger, exists in the myocardium and increases during ischemia in the myocardium.  相似文献   
6.
ATP-dependent oxalate facilitated calcium transport in sarcoplasmic reticulum (SR) preparations obtained from rabbit vastus lateralis muscle (fast skeletal muscle; Fsr) and soleus (slow skeletal muscle; Ssr) was determined. Addition of exogenous calmodulin did not stimulate calcium transport in either Fsr or Ssr preparations. Fsr and Ssr previously washed in 1 mM EGTA demonstrated a reduced capacity to transport Ca2+; the exogenous addition of calmodulin (0.24 μM) under these conditions, did not restore uptake activity but significantly decreased the steady-state level of Ca2+ uptake. Extracts of skeletal SR prepared by treatment with 0.2 mM EDTA and boiling produced significantly more stimulation of red cell Ca2+ATPase activity than extracts prepared by boiling alone. This stimulation of red cell Ca2+-ATPase was inhibited to a significant extent by 4880, a known anti-calmodulin agent. Radioimmunoassay revealed that extracts prepared by boiling or EDTA-treatment followed by boiling contained considerable amounts of calmodulin. Washing with 1 mM EGTA, though, did not release any calmodulin from SR. These studies reveal that calmodulin is present in both Fsr and Ssr and can only be removed by harsh treatments. The role of calmodulin in skeletal muscle Ca2+-transport remains to be determined.  相似文献   
7.

Background

Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart.

Methodology/Principal Findings

We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin.

Conclusions/Significance

We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling.  相似文献   
8.
The accumulation of intracellular triacylglycerol (TG) is highly correlated with muscle insulin resistance. However, it is controversial whether the accumulation of TG is the result of increased fatty acid supply, decreased fatty acid oxidation, or both. Because abnormal fatty acid metabolism is a key contributor to the pathogenesis of diabetes-related cardiovascular dysfunction, we examined fatty acid and glucose metabolism in hearts of insulin-resistant JCR:LA-cp rats. Isolated working hearts from insulin-resistant rats had glycolytic rates that were reduced to 50% of lean control levels (P < 0.05). Cardiac TG content was increased by 50% (P < 0.05) in the insulin-resistant rats, but palmitate oxidation rates remained similar between the insulin-resistant and lean control rats. However, plasma fatty acids and TG levels, as well as cardiac fatty acid-binding protein (FABP) expression, were significantly increased in the insulin-resistant rats. AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid and glucose metabolism. When activated, AMPK increases fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels, and it decreases TG content by inhibiting glycerol-3-phosphate acyltransferase (GPAT), the rate-limiting step in TG synthesis. The activation of AMPK also stimulates cardiac glucose uptake and glycolysis. We thus investigated whether a decrease in AMPK activity was responsible for the reduced cardiac glycolysis and increased TG content in the insulin-resistant rats. However, we found no significant difference in AMPK activity. We also found no significant difference in various established downstream targets of AMPK: ACC activity, malonyl-CoA levels, carnitine palmitoyltransferase I activity, or GPAT activity. We conclude that hearts from insulin-resistant JCR:LA-cp rats accumulate substantial TG as a result of increased fatty acid supply rather than from reduced fatty acid oxidation. Furthermore, the accumulation of cardiac TG is associated with a reduction in insulin-stimulated glucose metabolism.  相似文献   
9.
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.  相似文献   
10.
Myocardial glucose oxidation is markedly reduced in the uncontrolled diabetic. We determined whether this was due to direct biochemical changes in the heart or whether this was due to altered circulating levels of insulin and substrates that can be seen in the diabetic. Isolated working hearts from control or diabetic rats (streptozotocin, 55 mg/kg iv administered 6 wk before study) were aerobically perfused with either 5 mM [(14)C]glucose and 0.4 mM [(3)H]palmitate (low-fat/low-glucose buffer) or 20 mM [(14)C]glucose and 1.2 mM [(3)H]palmitate (high-fat/high-glucose buffer) +/-100 microU/ml insulin. The presence of insulin increased glucose oxidation in control hearts perfused with low-fat/low-glucose buffer from 553 +/- 85 to 1,150 +/- 147 nmol x g dry wt(-1) x min(-1) (P < 0. 05). If control hearts were perfused with high-fat/high-glucose buffer, palmitate oxidation was significantly increased by 112% (P < 0.05), but glucose oxidation decreased to 55% of values seen in the low-fat/low-glucose group (P < 0.05). In diabetic hearts, glucose oxidation was very low in hearts perfused with low-fat/low-glucose buffer (9 +/- 1 nmol x g dry wt(-1) x min(-1)) and was not altered by insulin or high-fat/high-glucose buffer. These results suggest that neither circulating levels of substrates nor insulin was responsible for the reduced glucose oxidation in diabetic hearts. To determine if subcellular changes in the control of fatty acid oxidation contribute to these changes, we measured the activity of three enzymes involved in the control of fatty acid oxidation; AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and malonyl-CoA decarboxylase (MCD). Although AMPK and ACC activity in control and diabetic hearts was not different, MCD activity and expression in all diabetic rat heart perfusion groups were significantly higher than that seen in corresponding control hearts. These results suggest that an increased MCD activity contributes to the high fatty acid oxidation rates and reduced glucose oxidation rates seen in diabetic rat hearts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号