首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2008年   1篇
  2006年   5篇
  2004年   3篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
排序方式: 共有23条查询结果,搜索用时 312 毫秒
1.
Two-weeks-old maize (Zea mays L. cv. XL-72.3) plants were submitted to Al concentrations of 0-81 g m-3 for 20 d, after which the A1 concentration-dependent effects on CO2 uptake by the mesophyll tissue and subsequent CO2 assimilation in the photosynthetic carbon reduction cycle of bundle sheath cells were investigated. The net photosynthetic rate (PN) and stomatal conductance (gs) increased continuously up to 27 g m-3 Al, whereas the intercellular CO2 concentration showed minimum values with the 27 g m-3 Al treatment. Moreover, the starch and saccharide concentrations, and fructose-1,6-bisphosphatase did not change significantly with increasing Al concentrations. The photosynthetic electron transport rates along with photosystems 2 and 1 started falling from 9 g m-3 Al onwards, while thylakoid acyl lipid composition did not show a clear pattern. With the Al concentration at 81 g m-3, NADP-malate dehydrogenase activity decreased to minimum values, whereas the opposite occurred with those of pyruvate dikinase, NADP-malic enzyme, and phosphoenolpyruvate carboxylase. Thus in vivo Al concentrations modulate the photosynthetic reduction cycle, possibly by interacting with the carbon flow rate exported to the cytosol. Although the inhibition of NADP-malate dehydrogenase activity might limit pyruvate dikinase, NADP-malic enzyme, and phosphoenolpyruvate carboxylase activities, in vivo the balance between phosphoenolpyruvate production and its carboxylation remains unaffected.  相似文献   
2.
Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data suggest that Coffea spp. plants may successfully cope with high [CO2] under the present experimental conditions.  相似文献   
3.
Manganese accumulation in rice: implications for photosynthetic functioning   总被引:1,自引:0,他引:1  
In order to gain fundamental insights into the nature of the adaptation to Mn excess, the characterisation of the photosynthetic apparatus in Mn-treated rice was carried out in 21-day-old plants. We found 17- and 11-fold increases in Mn in the leaf tissues and in thylakoid, respectively, when the plants were grown hydroponically in nutrient solutions with Mn concentrations between 0.125 and 32 mg l(-1) (2.3 and 582.5 microM). Net photosynthesis and the photosynthetic capacity decreased after the 0.5 and 2 mg l(-1) (9.1 and 36.4 microM) Mn treatment, respectively. The stomatal conductance displayed a similar trend to that of photosynthetic capacity. The levels of basal chlorophyll fluorescence and the ratio between variable and maximum chlorophyll fluorescence did not vary significantly among treatments, but the photochemical quenching and the quantum yield of non-cyclic electron transport increased until the 2 mg l(-1) (36.4 microM) Mn treatment. The lipid matrix of thylakoids revealed a global increase in the proportions of phospholipids, relative to galactolipids. This pattern was coupled with diminishing levels of monogalactosyldiacylglycerol. The relative ratio between total carotenoids and total chlorophylls decreased until the last Mn treatment, yet the levels of carotenes, zeaxanthin, and violaxanthin plus antheraxanthin displayed different patterns. It was further found that the de-epoxidation state involving the components of the xanthophylls cycle increased until the 8 mg l(-1) (145.6 microM) Mn treatment. The levels of the photosynthetic electron carriers displayed different patterns, with plastocyanin and the high and low forms of cytochrome b559 remaining steady, whereas cytochromes b563 and f increased until the 8 mg l(-1) (145.6 microM) Mn treatment and the quinone pool increased until the highest Mn treatment. It was concluded that Mn-mediated inhibition of rice photosynthesis barely implicates stomatal conductance, as well as the distribution of energy within the photosystems. In this context, alterations to the relative proportions of the different acyl lipids and isoprenoids, as well as to the accumulations of the photosynthetic electron carriers, seem to play a major role.  相似文献   
4.
Introductory genetics courses often include evolutionary genetics concepts such as sequence homology and functional conservation. It is usually assumed that two sequences showing homology (i.e., sharing a common ancestral sequence) perform the same molecular function. The correlation, however, does not always hold true, and evidence for functional conservation must come from functional studies. In this study we describe a genetics laboratory class that demonstrates functional conservation between the Drosophila protein Muscleblind (Mbl) and its human ortholog MBNL1. We use the Gal4/UAS system to express MBNL1 in a Drosophila mutant background and measure the in vivo activity of the human protein by rescue of mbl mutant phenotype in embryos. As a control, ubiquitous expression of Drosophila MblC, one of the four protein isoforms encoded by the gene, increased by 71% the viability of mbl mutant embryos and greatly reduced the hypercontracted abdomen of mutant larvae. In a parallel experiment, human MBNL1 provided a robust rescue of the embryonic lethality (78%) and improved abdomen hypercontraction as well. Under both conditions, rescued larvae die as first instars, probably due to overexpression effects, lack of alternative protein isoforms, or incomplete expression in critical tissues such as the nervous system. The use of two constructs in the rescue experiment (UAS-mblC and UAS-MBNL1) and the incomplete rescue prompt several questions for students. The fact that a human protein works in a Drosophila cellular context illustrates the use of an in vivo test to prove functional conservation.  相似文献   
5.
6.
7.
Peanut Photosynthesis Under Drought and Re-Watering   总被引:2,自引:0,他引:2  
Lauriano  J.A.  Ramalho  J.C.  Lidon  F.C.  do Céu Matos  M. 《Photosynthetica》2004,42(1):37-41
The photosynthetic response of three Arachis hypogaea L. cultivars (57-422, 73-30, and GC 8-35) grown for two months was measured under water available conditions, severe water stress, and 24, 72, and 93 h following re-watering. At the end of the drying cycle, all the cultivars reached dehydration, relative water content (RWC) ranging between 40 and 50 %. During dehydration, leaf stomatal conductance (g s), transpiration rate (E), and net photosynthetic rate (P N) decreased more in cvs. 57-422 and GC 8-35 than in 73-30. Instantaneous water use efficiency (WUEi) and photosynthetic capacity (P max) decreased mostly in cv. GC 8-35. Except in cv. GC 8-35, the activity of photosystem 1 (PS1) was only slightly affected. PS2 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were the main targets of water stress. After re-watering, cvs. 73-30 and GC 8-35 rapidly regained g s, E, and P N activities. Twenty-four hours after re-watering, the electron transport rates and RuBPCO activity strongly increased. P N and P max fully recovered later. Considering the different photosynthetic responses of the studied genotype, a general characterisation of the interaction between water stress and this metabolism is presented.  相似文献   
8.
Lauriano  J.A.  Campos  P.S.  Ramalho  J.C.  Lidon  F.C.  Guedes  M.E.  do Céu Matos  M. 《Photosynthetica》1997,33(1):81-90
Photosynthetic capacity (PC) of three peanut cultivars (Arachis hypogaea L. cvs. 57-422, 73-30, and GC 8-35) decreased during drought stress (decline in relative water content from ca. 95 to 70 %) and recovered two days after rewatering. Mild water stress was not limiting for the total ribulose-1,5-bisphosphate carboxylase/oxygenase activity, since this enzyme activity increased under drought. Photosystem (PS) 2 and PS1 (the latter only in cv. GC 8-35) electron transport activities decreased under drought. The ratio of the variable to maximal chlorophyll fluorescence (Fv/Fm) decreased mainly in the cv. GC 8-35. All cultivars showed decreases in photochemical quenching (qP) and quantum yield of PS2 electron transport (Φe). Increase of basal fluorescence (F0) was observed in the cvs. 73-30 and GC 8-35, while the cv 57-422 showed a decrease. After rewatering a sharp increase was observed in the majority of the parameters. Thus under the present stress conditions, the cv GC 8-35 was the most affected for all the parameters under study. The cv. 57-422 showed a higher degree of tolerance being gradually affected in photosynthetic capacity (PC) in contrast to the two other cvs. which showed a sharp decrease in PC at the beginning of the drought cycle. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
9.
Lidon  F.C.  Ramalho  J.C.  Barreiro  M.G. 《Photosynthetica》1998,34(3):393-400
Two-weeks-old maize (Zea mays L. cv. XL-72.3) plants were submitted to Al concentrations of 0-81 g m-3 for 20 d, after which the A1 concentration-dependent effects on CO2 uptake by the mesophyll tissue and subsequent CO2 assimilation in the photosynthetic carbon reduction cycle of bundle sheath cells were investigated. The net photosynthetic rate (PN) and stomatal conductance (gs) increased continuously up to 27 g m-3 Al, whereas the intercellular CO2 concentration showed minimum values with the 27 g m-3 Al treatment. Moreover, the starch and saccharide concentrations, and fructose-1,6-bisphosphatase did not change significantly with increasing Al concentrations. The photosynthetic electron transport rates along with photosystems 2 and 1 started falling from 9 g m-3 Al onwards, while thylakoid acyl lipid composition did not show a clear pattern. With the Al concentration at 81 g m-3, NADP-malate dehydrogenase activity decreased to minimum values, whereas the opposite occurred with those of pyruvate dikinase, NADP-malic enzyme, and phosphoenolpyruvate carboxylase. Thus in vivo Al concentrations modulate the photosynthetic reduction cycle, possibly by interacting with the carbon flow rate exported to the cytosol. Although the inhibition of NADP-malate dehydrogenase activity might limit pyruvate dikinase, NADP-malic enzyme, and phosphoenolpyruvate carboxylase activities, in vivo the balance between phosphoenolpyruvate production and its carboxylation remains unaffected.  相似文献   
10.
Lidon  F.C.  Ramalho  J.C.  Barreiro  M.G. 《Photosynthetica》1998,35(2):213-222
Two weeks-old maize (Zea mays cv. XL-72.3) plants were exposed to Al concentrations 0 (Al0), 9 (Al9), 27 (Al27) or 81 (Al81) g m-3 for 20 d in a growth medium with low ionic strength. Thereafter, the Al concentration-dependent interactions on root nitrate uptake, and its subsequent reduction to ammonia in the leaves were investigated. Al concentrations in the roots sharply increased with increasing Al concentrations while root elongation correspondingly decreased. Root fresh and dry masses, acidification capacity, and nitrate and nitrogen contents decreased from Al27 onwards, whereas leaf nitrogen, nitrate, nitrite, and ammonia concentrations decreased starting with Al9. Electrolytic conductance increased by 60 % in root tissues from Al0 to Al81 but it did not increase significantly in the leaves. In Al9, Al27, and Al81 plants a decrease in shoot fresh and dry masses was observed. Al concentrations between 0 and 27 g m-3 increased net photosynthetic rate, stomatal conductance, and the quantum yield of photosynthetic electron transport, whereas the intercellular CO2 concentration was minimum in Al27 plants. In the leaves, nitrate reductase (E.C. 1.6.6.1) activity increased until Al27, and nitrite reductase (E.C. 1.6.6.4) activity until Al81. Hence there may be an Al mediated extracellular and intracellular regulation of root net nitrate uptake. Nitrate accumulation in the roots affects the translocation rates and, therefore, the nitrate concentration in the leaves. The in vivo reducing power generated by the photosynthetic electron flow does not limit nitrate to ammonia reduction, and the increase of maximum nitrate and nitrite reductase activities parallels the decreasing nitrate, nitrite, and ammonia concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号