首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lauriano  J.A.  Lidon  F.C.  Carvalho  C.A.  Campos  P.S.  do Céu Matos  M. 《Photosynthetica》2000,38(1):7-12
The effects of drought on thylakoid acyl lipid composition, photosynthetic capacity (P max), and electrolyte lekage were evaluated in two-months-old peanut cultivars (57-422, 73-30, GC 8-35) growing in a glasshouse. For lipid studies, plants were submitted to three treatments by withholding irrigation: control (C), mild water stress (S1), and severe water stress (S2). Concerning membrane and photosynthetic capacity stability, drought was imposed by polyethylene glycol (PEG 600). In the cv. 73-30 a sharp decrease in the content of thylakoid acyl lipids was observed, already under S1 conditions, whereas cv. 57-422 was strongly affected only under S2. Cv. GC 8-35 had the lowest content of acyl lipids under control conditions, a significant increase under S1 conditions, and only under S2 a decrease occurred. Thus concerning lipid stability, cv. 73-30 was the most sensitive. Among lipid classes, phospholipids and galactolipids were similarly affected, as was MGDG relatively to DGDG. Water deficit imposed by PEG induced a higher increase in electrolyte leakage in cv. 73-30 than in the other cvs. A positive relationship between acyl lipid concentration and membrane integrity was found in all studied cvs. A positive association between acyl lipid concentration, membrane integrity, and P max was found in the cvs. 57-422 and 73-30.  相似文献   

2.
Peanut Photosynthesis Under Drought and Re-Watering   总被引:2,自引:0,他引:2  
Lauriano  J.A.  Ramalho  J.C.  Lidon  F.C.  do Céu Matos  M. 《Photosynthetica》2004,42(1):37-41
The photosynthetic response of three Arachis hypogaea L. cultivars (57-422, 73-30, and GC 8-35) grown for two months was measured under water available conditions, severe water stress, and 24, 72, and 93 h following re-watering. At the end of the drying cycle, all the cultivars reached dehydration, relative water content (RWC) ranging between 40 and 50 %. During dehydration, leaf stomatal conductance (g s), transpiration rate (E), and net photosynthetic rate (P N) decreased more in cvs. 57-422 and GC 8-35 than in 73-30. Instantaneous water use efficiency (WUEi) and photosynthetic capacity (P max) decreased mostly in cv. GC 8-35. Except in cv. GC 8-35, the activity of photosystem 1 (PS1) was only slightly affected. PS2 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were the main targets of water stress. After re-watering, cvs. 73-30 and GC 8-35 rapidly regained g s, E, and P N activities. Twenty-four hours after re-watering, the electron transport rates and RuBPCO activity strongly increased. P N and P max fully recovered later. Considering the different photosynthetic responses of the studied genotype, a general characterisation of the interaction between water stress and this metabolism is presented.  相似文献   

3.
Mechanisms of energy dissipation in peanut under water stress   总被引:1,自引:0,他引:1  
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57–422, 73–30, and GC 8–35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated with the contents of the low and high potential forms of cytochrome (cyt) b 559, plastoquinone, cyt b 563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective for 57–422 and GC 8–35, while in the cv. 73–30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1 only for the cvs. 57–422 and 73–30.  相似文献   

4.
Groundnut (Arachis hypogaea L.) is the most important oil and cash crop in the sub-Sahelian tropics. Plant adaptation to drought, i.e. cultivars (cvs) that can maintain yield when water is limited, is a complex phenomenon which is not yet fully understood. This study aimed to identify traits expressed at the early stages of the cycle that could reveal cv differences in drought adaptation in the field. The field productivity of four Sahelian groundnut cvs was assessed during three crop seasons in Bambey (Senegal). The same cvs grown in rhizotrons were subjected to early drought stress and to a desiccation test to assess cell membrane tolerance. Between-cv differences were found with respect to pod yield, biomass production, water use efficiency (WUE), stomatal regulation and cell membrane tolerance. Two strategies to cope with water deficit were identified. The first behaviour was characterised by high rapid water loss, late stomatal closure and low cell membrane damage during drought. These traits are all found in the semi-late Virginia cv 57-422 and, into a lesser extent, in the early Spanish cv Fleur 11. For both cvs, biomass production was boosted under favourable conditions in rhizotrons but the semi-late cv had poor pod yield under end-of-season water deficit conditions. The second strategy involved opposite characters, leading to the maintenance of a higher water status, resulting in lower photosynthesis and yield. This characterised the early Spanish cv 73-30, and also, to some extent, the early Spanish cv 55-437. Earliness associated with high WUE, stomatal conductance and cell membrane tolerance, were the main traits of Fleur 11, a cv derived from a Virginia × Spanish cross, which was able to maintain acceptable yield under varying drought patterns in the field. These traits, as they were detectable at an early stage, could therefore be efficiently integrated in groundnut breeding programmes for drought adaptation.  相似文献   

5.
Two durum (Triticum durum L.), Barakatli-95 and Garagylchyg-2; and two bread (Triticum aestivum L.) wheat cultivars, Azamatli-95 and Giymatli-2/17 with different sensitivities to drought were grown in the field on a wide area under normal irrigation and severe water deficit. Drought caused a more pronounced inhibition in photosynthetic parameters in the more sensitive cvs Garagylchyg-2 and Giymatli-2/17 compared with the tolerant cvs Barakatli-95 and Azamatli-95. Upon dehydration, a decline in total chlorophyll and relative water content was evident in all cultivars, especially in later periods of ontogenesis. Potential quantum yield of PS II (F(v)/F(m) ratio) in cv Azamatli-95 was maximal during stalk emergency stage at the beginning of drought. This parameter increased in cv Garagylchyg-2, while in tolerant cultivar Barakatli-95 significant changes were not observed. Contrary to other wheat genotypes in Giymatli-2/17 drought caused a decrease in PS II quantum yield. Drought-tolerant cultivars showed a significant increase in CAT activity as compared to control plants. In durum wheat cultivars maximal activity of CAT was observed at the milk ripeness and in bread wheat cultivars at the end of flowering. APX activity also increased in drought-treated leaves: in tolerant wheat genotypes maximal activity occurred at the end of flowering, in sensitive ones at the end of ear formation. GR activity increased in the tolerant cultivars under drought stress at all stages of ontogenesis. SOD activity significantly decreased in sensitive cultivars and remained at the control level or increased in resistant ones. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

6.
干旱严重影响柑橘的生长和发育.为探索柑橘对干旱胁迫的响应机制,本试验以抗旱性不同的三湖红橘和三湖化红为材料,通过盆栽控水进行干旱胁迫和复水处理,研究处理后植株叶片光合、叶绿素荧光和根系构型的变化.结果表明: 干旱显著降低了两种柑橘幼苗的净光合作用速率、气孔导度、蒸腾速率和胞间CO2浓度,而三湖红橘的下降幅度更小;复水后,光合参数均有所恢复,但仍低于对照.三湖红橘水分利用率在干旱15 d后开始显著高于对照,而三湖化红除干旱15 d外的其他处理时间均低于对照.干旱提高了两种幼苗的PSII最大光合效率,但抑制了三湖化红的PSII实际光合效率.干旱到一定程度后,两种幼苗的PSII电子传递速率和光化学淬灭均下降,干旱和复水后非光化学淬灭在三湖红橘中下降,但在三湖化红中上升.根系构型分析表明,干旱导致两种幼苗的根表面积和根体积下降,同时抑制了三湖化红的总根长,但能够提高三湖红橘的总根长和总根尖数.进一步分析不同直径的侧根长度发现,三湖红橘的一类侧根长度在干旱胁迫10 d后开始增加,而三湖化红的一类侧根长度在干旱前期没有变化,干旱20 d时显著下降;除三湖红橘的三类侧根外,两种幼苗其余直径等级侧根的生长均受干旱抑制.除总根尖数外,复水后根系生长各参数均没有恢复.干旱对三湖红橘光合性能的影响小于三湖化红,并且前者能够维持更高的水分和光能利用率.干旱后三湖红橘根尖数和细根长度增加,可能有助于提高其对水分的吸收能力.  相似文献   

7.
To investigate the responses of castor bean to repeated drying–wetting cycles (RDWC), morpho-physiological parameters of two cultivars (Jiaxiang 2 and Hangbi 8) were determined by a pot experiment under well-watered control and RDWC. RDWC inhibited plant growth and leaf development, decreased water loss rate (WLR), and enhanced leaf mass per area (LMA) and chlorophyll content as indicated by spectral reflectance indices for both cultivars. Photosynthesis was inhibited by progressive drought stress but quickly recovered after rewatering for each cycle. Both cultivars exhibit a similar pattern of acclimation to RDWC: (1) higher LMA and lower WLR, (2) increased photosynthetic capacity under drought stress with increasing cycle numbers, (3) quick recovery and over-compensation for photosynthesis after rewatering, and (4) increased chlorophyll content. Jiaxiang 2 shows a high capacity for water preservation under drought stress and an over-compensation for photosynthesis after rewatering compared with Hangbi 8.  相似文献   

8.
We studied the effect of water stress imposed at anthesis and pre-anthesis stages on oxidative stress and antioxidant activity in four wheat cultivars, two hexaploid Triticum aestivum cultivars, drought resistant cv. C 306 and drought susceptible cv. Hira, and two tetraploid cultivars, T. durum cv. A 9-30-1 and T. dicoccum cv. HW 24. Water stress decreased relative water content (RWC), membrane stability index (MSI), and increased H2O2 and malondialdehyde (MDA) contents as well as activity of superoxide dismutase (SOD), catalase (Cat) and peroxidase (POX) in all the genotypes at all the stages. Both the tetraploid cultivars showed higher RWC, MSI and SOD activity, and lower H2O2 and MDA contents under water stress than hexaploid ones. Cat and POX activities were highest in C 306.  相似文献   

9.
水分胁迫及复水过程中小麦抗氧化酶的变化   总被引:9,自引:0,他引:9  
对两个抗旱性不同的小麦品种进行水分胁迫和复水处理,研究其抗氧化酶活性的响应。在水分胁迫下,陇春-20的相对含水量高于优鉴-24,复水24h后,优鉴-24的相对含水量恢复较快且高于陇春-20。水分胁迫下,优鉴-24中H2O2含量增加迅速,而且各阶段含量均高于陇春-20,复水后两个品种的H2O2含量都下降,这表明优鉴-24在水分胁迫时受到更严重的氧化胁迫。采用温和胶电泳结合抑制剂实验发现小麦有3条Mn—SOD,一条Fe—SOD和Cu/Zn-SOD同工酶带,CAT同工酶有3条谱带。在水分胁迫和复水期间,优鉴-24的SOD和CAT活性高于陇春-20,随着水分胁迫程度的增加,两个品种的SOD和CAT活性都增强,复水后,优鉴-24的SOD活性继续增强,而陇春-20的Mn—SOD—3活性略微降低,Fe—SOD和Cu/Zn—SOD活性略微升高,陇春-20的CAT活性降低。水分胁迫诱导了Mn—SOD—1在优鉴-24及Mn—SOD-2和Fe—SOD在陇春-20中的表达。  相似文献   

10.
Effects of the antioxidant system and chlorophyll fluorescence on drought tolerance of four common bean (Phaseolus vulgaris L.) cultivars were studied. The cultivars were positioned in the order of a decrease in their drought tolerance: Yakutiye, Pinto Villa, Ozayse, and Zulbiye on the basis of changes in the water potential, stomatal conductance, photosynthetic pigment content, and lipid peroxidation. Under drought conditions, the level of H2O2 was not changed in cv. Pinto Villa but decreased in other cultivars. Antioxidant enzymes (superothide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)) were generally activated in all cultivars. Interestingly, CAT, APX, and GR activities were not changed in cv. Pinto Villa, APX activity decreased in cv. Yakutiye, and CAT activity was not changed in cv. Zulbiye. The increases in SOD and GPX activities in cv. Ozayse were higher than in other cultivars. Drought stress reduced the effective quantum yield of PS2 (ΦPS2) and the photochemical quenching (qp), while it increased nonphotochemical quenching (NPQ) in all cultivars. The reduction or increase was more pronounced in cv. Zulbiye. There were generally significant correlations between qp, NPQ, and ROS scavenging by SOD and APX. Also, there were significant correlations between SOD and qp in tolerant cultivars and APX and qp in sensitive ones. The results indicate that activation of SOD and APX was closely related to the efficiency of PS2 in common bean cultivars. This interaction was essential for protection of photosystems and plant survival under drought.  相似文献   

11.
Proteomic analysis of rice leaves during drought stress and recovery   总被引:6,自引:0,他引:6  
Three-week old plants of rice (Oryza sativa L. cv CT9993 and cv IR62266) developed gradual water stress over 23 days of transpiration without watering, during which period the mid-day leaf water potential declined to approximately -2.4 MPa, compared with approximately -1.0 MPa in well-watered controls. More than 1000 protein spots that were detected in leaf extracts by proteomic analysis showed reproducible abundance within replications. Of these proteins, 42 spots showed a significant change in abundance under stress, with 27 of them exhibiting a different response pattern in the two cultivars. However, only one protein (chloroplast Cu-Zn superoxide dismutase) changed significantly in opposite directions in the two cultivars in response to drought. The most common difference was for proteins to be up-regulated by drought in CT9993 and unaffected in IR62266; or down-regulated by drought in IR62266 and unaffected in CT9993. By 10 days after rewatering, all proteins had returned completely or largely to the abundance of the well-watered control. Mass spectrometry helped to identify 16 of the drought-responsive proteins, including an actin depolymerizing factor, which was one of three proteins detectable under stress in both cultivars but undetectable in well-watered plants or in plants 10 days after rewatering. The most abundant protein up-regulated by drought in CT9993 and IR62266 was identified only after cloning of the corresponding cDNA. It was found to be an S-like RNase homologue but it lacked the two active site histidines required for RNase activity. Four novel drought-responsive mechanisms were revealed by this work: up-regulation of S-like RNase homologue, actin depolymerizing factor and rubisco activase, and down-regulation of isoflavone reductase-like protein.  相似文献   

12.
Comparison of resistance to drought of three bean cultivars   总被引:4,自引:0,他引:4  
The aim of the present work was to evaluate oxidative stress and plant antioxidant system of three contrasting bean (Phaseolus vulgaris L.) genotypes in the response to drought. Drought was imposed 14 d after emergence, by withholding water, until leaf relative water content reached 65 %. Water stress increased lipid peroxidation (LPO), membrane injury index, H2O2 and OH production in leaves of stressed plants. Activities of the antioxidative enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APOX) increased significantly under water stress in all the studied cultivars, while catalase (CAT) increased in cvs. Plovdiv 10 and Prelom, but decreased in cv. Dobrudjanski ran. Furthermore cv. Plovdiv 10 which had the highest APOX and CAT activities also showed the lowest increase in H2O2 and OH production and LPO while cv. Dobrudjanski ran showed the lowest increases (and often the lowest values) in the antioxidant enzyme activities and the highest increases of H2O2 and OH production, and LPO. On the basis of the data obtained we could specify cv. Plovdiv 10 and cv. Prelom as drought tolerant and cv. Dobrudjanski ran as a drought sensitive.  相似文献   

13.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

14.
干旱对烟草旺长期光合作用的影响   总被引:4,自引:0,他引:4  
以盆栽的两个推广品种K326和红花大金元(Hongda)为材料,探讨干旱胁迫对烟草光合作用的影响。结果显示,干旱胁迫导致烟草净光合速率、气孔导度、蒸腾速率降低,胞间CO2浓度在轻度和中度胁迫时降低而在重度胁迫时升高;K326(较抗旱)的光合作用出现降低的时间较红花大金元(不抗旱)晚,变化的幅度也相对较小。实验表明,烟草光合作用对干旱胁迫非常敏感,而抗旱品种受到的伤害相对较轻。  相似文献   

15.
Stomatal behaviour, transpiration and nitrogen fixation were investigated in Medicago sativa L. (cvs. Tierra de Campos and Aragon, Hidalgo-Maynar 1966), Trifolium repens L. (cv. Aberystwyth S-184) and Trifolium subterraneum L. (cv. Clare) subjected to drought by withholding water and then to three days’ recovery after rewatering. Dawn leaf water potential was measured with pressure chamber, stomatal response with a diffusion porometer and nitrogen fixation by using acetylene reduction technique. At low water potentials, the leaf resistance was higher in Medicago than in Trifolium. As water stress developed all species decreased their transpiration, T. subterraneum being the one most affected by moderate deficits. During water stress ‘Tierra de Campos’ always maintained higher acetylene reduction levels than ‘Aragon’ and the Trifolium species, except for the lowest water potentials. During recovery from water stress only ‘Tierra de Campos’ reached predeficit transpiration rates. In ‘Tierra de Campos’ acetylene reduction recovery after rewatering was more rapid and intense than in ‘Aragon’. It is concluded that, of the plants investigated, ‘Tierra de Campos’ was best adapted to water deficits.  相似文献   

16.
Complex study of the effect of soil drought (72 h) and subsequent rehydration for 24 and 48 h on the activities of antioxidant and osmoprotective systems in the leaves of young plants of winter wheat (Triticum aestivum L.) cvs. Ballada (high productivity) and Beltskaya (low productivity) was carried out. Under drought conditions, the content of water in the leaves of cv. Ballada reduced to a lesser degree than in the leaves of cv. Beltskaya. Drought did not affect the rate of leaf growth in cv. Ballada but retarded leaf growth in cv. Beltskaya. Under drought conditions, the content of ascorbate reduced in cv. Beltskaya but was not changed in cv. Ballada; the content of glutathione increased by 19% in cv. Ballada and by 30% in cv. Beltskaya. Under drought conditions, ascorbate peroxidase activity was not changed in cv. Ballada whereas in cv. Beltskaya there was a tendency to its decrease. Glutathione reductase activity in the leaves of cv. Beltskaya increased stronger than in cv. Ballada. Substantial differences between cultivars in the accumulation of reducing sugars and sucrose under water deficit were observed. In both cultivars, drought induced an active proline accumulation. Observed differences in the cultivar responses to water stress evidently indicate differences in the strategy of their adaptation to drought. Drought did not affect the contents of chlorophyll and MDA in both cultivars. The data obtained allow a suggestion that, under conditions of moderate soil drought, the coordinated system of antioxidant defense and osmotic control functioned sufficiently effective; as a result, oxidative stress was not developed in both cultivars. Young plants of both cultivars differing in their responses to water deficit retained the ability to recover after rehydration.  相似文献   

17.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

18.
Under unpredictable climatic scenarios, drought is one of the major environmental constraints limiting plant growth and productivity in arid and semi-arid regions. Rapid recovery from drought is of paramount importance for the persistence and survival of different crops growing worldwide. The boiling soluble proteins, BSPs (proteins remaining soluble upon boiling in aqueous solution) forms an instrumental part of the response to water deficit conditions and might be of key importance for the survival of plants under unfavourable environmental conditions. These BSPs are typified by two unique properties: high hydrophilicity and high thermal stability. The main objective of the study was to determine drought-induced changes in the markers of oxidative stress along with modulation in the activity of the boiling soluble antioxidants in response to different stress regimes followed by re-watering in Triticum aestivum L. In this study, we determined the indices of oxidative stress (membrane injury index (MII) and lipid peroxidation in terms of malondialdehyde (MDA) content) and activities of boiling soluble antioxidant enzymes in seeds of sensitive and tolerant cultivars of wheat at different duration of stress (3, 6 and 10 days) followed by recovery (post stress harvest). Water content recorded a decline in the sensitive (PBW 343 and PBW 621) as well as tolerant (PBW 527 and PBW 175) cultivars in stress duration and cultivar dependent manner and this was reversed following re-watering in all the cultivars. Oxidative stress indicators also increased in all the cultivars at different stress intensities but this was reversed following re-watering in the tolerant cvs. PBW 175 and PBW 527. At 3 and 6 days, boiling soluble monodehydroascorbate reductase (BsMDAR), boiling soluble protein disulphide isomerase (BsPDI) activity increased in both the tolerant cvs. PBW 175 and PBW 527 whereas boiling soluble guaiacol peroxidase (BsGPX) increased in the sensitive cv. PBW 343. However, as the stress intensity increased to 10 days, BsMDAR, boiling soluble glutathione-S-transferase (BsGST) and BsGPX increased only in the tolerant cvs. PBW 175 and PBW 527, thus accentuating their cardinal roles in stress tolerance under harsh drought conditions. Upon re-watering the stress plants after 10 days, BsMDAR increased only in the tolerant cv. PBW 175. On the other hand, boiling soluble protein disulphide isomerase (BsPDI) increased in both the tolerant cv. PBW 175 and susceptible cv. PBW 343, but with a greater enhancement in the cv. PBW 175. Based upon our results, biochemical significance of the boiling soluble antioxidants in the cultivars of wheat differing in drought resistance during different stress intensities and recovery is discussed.  相似文献   

19.
World areas subject to drought are expected to increase under conditions of climate change. The purpose of this study is to clarify the response of grass species that can grow and produce under water stress. Therefore leaf photosynthesis, chlorophyll fluorescence and pigment content response to water stress were studied in two varieties of the C4 grass Eragrostis curvula. Two-year-old plants of cv Ermelo and Consol were grown in plastic pots. Drought stress was imposed by withholding irrigation for 15 days and then rewatering for 5 days. During drought relative water content (RWC) decreased 65% in cv Ermelo, while lower reductions of RWC were observed in cv Consol. During the experiment in cv Ermelo increasing drought stress severity caused large decreases in photosynthetic rates, maximal PSII photochemical efficiency (FV/FM) and leaf pigment content. Cv Consol showed small variations in these parameters. Compared to cv Consol, after 15 days of drought, effective PSII quantum yield (ΦII) was significantly lower in cv Ermelo. Reductions of ΦII were related to significant reductions of open PSII energy capture efficiency (FV/FM). Photosynthetic response to increasing PPFD levels and to internal CO2 concentration (Ci) were reduced by drought in cv Ermelo. Compared to well-watered control plants and to cv Consol, drought stressed plants of cv Ermelo showed also reductions of the initial slope of photosynthetic response to Ci and in the photosynthetic rate measured at saturating Ci. Moreover stomatal conductance (g) of both cvs decreased during drought. However, g was lower in drought stressed plants of cv Consol than in cv Ermelo. Water stress caused large reductions in leaf chlorophyll and carotenoid content in cv Ermelo, and small reductions in cv Consol. In drought-sensitive cv Ermelo water stress reduced the capabilities to down regulate PSII functionality through thermal energy dissipation. Results suggest that drought resistance of cv Consol, can be attributed to a higher water use efficiency.  相似文献   

20.
Effects of water stress at different stages of plant growth on leaf relative water content (RWC), osmotic potential (Ψos) and changes in contents of chlorophyll, abscisic acid (ABA), zeatin riboside (t-ZR), ethylene and proline in six cultivars of French bean (Phaseolus vulgaris L.) were studied. Under water stress, Ψos and RWC were highest in cv. Contender and lowest in cvs. IIHR-909 and Sel-2. The increase in contents of ABA and proline was marked in cv. Contender followed by cv. UPF-626. Decrease in t-ZR and chlorophyll contents was prominent in cv. IIHR-909. Ethylene production surged in all the cultivars under 4- and 8-d stress and declined under 12-d stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号