首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   9篇
  1991年   9篇
  1990年   5篇
  1989年   9篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
1.
Reversible denaturation of several proteins (alpha-chymotrypsin, trypsin, laccase, chymotrypsinogen, cytochrome c and myoglobin) by a broad series of organic solvents of different nature was studied. The regularities of this process were analyzed, employing both experimental and literary data based on the results of kinetic and spectroscopic measurements. In all the systems under study denaturation proceeded in a threshold manner, i. e., an abrupt change in the catalytic and/or spectroscopic properties of the dissolved proteins was observed after a certain threshold concentration of the organic solvent had been reached. To account for the observed features of the denaturation process, a thermodynamic model of reversible protein denaturation by organic solvents was proposed. This model is based on the widely accepted viewpoint that the undisturbed water shell around the protein globule is necessary for maintaining the dissolved protein in the native state. Quantitative analysis of the model led to an equation establishing a relationship between the threshold concentration of an organic solvent and its physico-chemical characteristics, such as hydrophobicity, solvating ability and molecular geometry. This equation fits well in the experimental data for all the proteins tested. Based on the above thermodynamic model of protein denaturation, a novel quantitative parameter characterizing the denaturing strength of organic solvents (termed as the denaturation capacity or DC) was proposed. Different organic solvents arranged according to their DC values form the DC scale of organic solvents which permits to predict theoretically the threshold concentration of any organic solvent for a given protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The characteristics of water-soluble enzyme (alpha-chymotrypsin) modification with [3H] palmitoyl chloride in the reversed Aerosol OT micelles in octane were determined. The degree of enzyme modification depends on the molar ratio [palmitoyl chloride]/[protein]. The modification reaction is characterized by the wide pH-optimum range and proceeds with high speed.  相似文献   
3.
A heterodimeric enzyme (gamma-glutamyltransferase) was studied in the reversed micellar medium of Aerosol OT (AOT) in octane. As was shown earlier, the size (radius) of inner cavity of the AOT-reversed micelles is determined by their hydration degree, i.e., [H2O]/[AOT] molar ratio, in the system. Owing to this, the dependence of hydrolytic, transpeptidation and autotranspeptidation activities of the enzyme on the hydration degree was investigated using L- and D-isomers of gamma-glutamyl(3-carboxy-4-nitro)anilide and glycylglycine as substrates. For all of the reaction types, the observed dependences are curves with three optima. The optima are found at the hydration degrees, [H2O]/[AOT] = 11, 17 and 26 when the inner cavity radii of reversed micelles are equal to the size of light (Mr 21,000) and heavy (Mr 54,000) subunits of gamma-glutamyltransferase, and to their dimer (Mr 75,000), respectively. Ultracentrifugation experiments showed that a change of the hydration degree resulted in a reversible dissociation of the enzyme to light and heavy subunits. The separation of light and heavy subunits of gamma-glutamyltransferase formed in reversed micelles was carried out and their catalytic properties were studied. The two subunits catalyze hydrolysis and transpeptidation reactions; autotranspeptidation reaction is detected only in the case of the heavy subunit. These findings imply that the reversed micelles of surfactants in organic solvents function as the matrices with adjustable size permitting to regulate the supramolecular structure and the catalytic activity of oligomeric enzymes.  相似文献   
4.
Possibilities of a new principle for the homogeneous enzyme immunoassay utilizing the systems of surfactant reversed micelles in organic solvents have been demonstrated taking thyroxine determination as an example. The catalytic activity of an enzyme, solubilized in such systems, is determined by the ratio of geometric dimensions of the micellar matrice and the enzyme molecule. The addition of antibodies against thyroxine to the peroxidase-thyroxine conjugate, solubilized in the system of reversed micelles of aerosol OT in octane, leads to the formation of the immune complex whose size differs substantially from that of the initial enzyme-antigen conjugate. This induces changes in the peroxidase catalytic activity. The addition of free thyroxine to the system stimulates the conjugate release from the immune complex and, consequently, the reduction of the peroxidase activity to the initial level. Sensitivity of the analysis in reversed micellar systems can be regulated by changing the surfactant hydration degree. Substances of different nature (both hydrophobic and hydrophylic) can be solubilized in reverse micellar systems under standard conditions, which allows determination of water insoluble antigens.  相似文献   
5.
Comparative studies were carried out in the catalytic activity regulation of native alpha-chymotrypsin and its artificially produced hexameric form as an example of non-dissociating oligomeric enzyme (covalently cross-linked by means of succinimidyl-3-(2-pyridylthiopropionate] in the Aerosol OT reversed micelles in octane. Native (monomeric) alpha-chymotrypsin exhibits maximal catalytic activity in the reversed micelles at the hydration degree w0 = 10, when the radius of the micelle inner cavity is equal to the radius of the alpha-chymotrypsin globule. For the alpha-chymotrypsin hexamer, optimum is observed at w0 = 45, with the inner micellar cavity radius (r = 68 A) being approximately equal to the radius of the sphere surrounding the octahedral combination of the six monomeric alpha-chymotrypsin molecules (r = 61 A). Thus, construction of the corresponding oligomeric structures is made easy, with the optimal catalytic activity in a preset range of the hydration degrees.  相似文献   
6.
7.
Catalysis by laccase from Coriolus uersicolor solubilized in the ternary systems of surfactant/water/organic solvent type, namely, Aerosol OT/water/octane, Brij 56/water/cyclohexane and egg lecithin/water/octane + pentanol + methanol mixture, has been studied. The laccase activity is found to depend, in principle, not only on the water/surfactant molar ratio, but on the surfactant concentration (with its hydration degree being constant) as well. The following inferences should be emphasized. Firstly, in all the systems under study, the catalytic activity (kcat) of laccase entrapped into surfactant reversed micelles increases more than 50 times (when the surfactant concentration is extrapolated to zero) compared with the kcat value in aqueous solution. Secondly, the catalytic activity (kcat) of laccase entrapped in hydrated Aerosol OT aggregates, having lamellar, reversed cylindrical (hexagonal) and reversed micellar structure, depends greatly on the aggregate type. In other words, the phase transitions, i.e. an alteration in the packing of hydrated Aerosol OT molecules, evokes a sharp reversible change in the enzymatic activity. Thirdly, in the same phase, the catalytic activity of the solubilized enzyme depends on the linear dimensions of water cavities inside the surfactant aggregates (i.e. on the water content in the system under study). All these effects, regulating enzymatic activity, are probably caused by an alteration of the conformational mobility of laccase molecules incorporated into the inner polar cavities inside the surfactant aggregates.  相似文献   
8.
Summary When free chymotrypsin is used to catalyse hydrolysis of N-acetyl tyrosine ethyl ester in 90% acetonitrile, the reaction rate soon falls because of the accumulation of the acidic product. If the enzyme is used in the form of a suspended complex with polyacrylic acid, the polyelectrolyte acts as an acid-base buffer to permit extended reaction.  相似文献   
9.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   
10.
Regulation of supra-macromolecular composition and catalytic activity of a heterodimeric enzyme, gamma-glutamyltransferase, in the system of Aerosol OT (sodium bis(2-ethylhexyl) sulfosuccinate) reversed micelles in octane were studied. Variation of the surfactant hydration degree (parameter, determining dimensions of the polar inner cavity of the micelle) causes a reversible dissociation of the enzyme to light and heavy subunits. Both enzyme subunits possess catalytic activity. The light and heavy subunits of the enzyme were separated on a preparative scale in a reversed micelle system using ultracentrifugation. The active centers of gamma-glutamyltransferase were studied using its irreversible inhibitor--AT-125 (L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). Separation of the gamma-glutamyltransferase subunits results in the 'opening' of a new active center located at the heavy subunit. In the dimer form of the enzyme this center is masked and it is not accessible to both substrate and inhibitor molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号