首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1664篇
  免费   149篇
  2023年   6篇
  2022年   11篇
  2021年   21篇
  2020年   19篇
  2019年   21篇
  2018年   25篇
  2017年   23篇
  2016年   34篇
  2015年   66篇
  2014年   78篇
  2013年   109篇
  2012年   112篇
  2011年   112篇
  2010年   65篇
  2009年   67篇
  2008年   80篇
  2007年   95篇
  2006年   69篇
  2005年   73篇
  2004年   52篇
  2003年   61篇
  2002年   77篇
  2001年   30篇
  2000年   36篇
  1999年   28篇
  1998年   26篇
  1997年   20篇
  1996年   17篇
  1995年   13篇
  1994年   11篇
  1993年   17篇
  1992年   25篇
  1991年   10篇
  1990年   8篇
  1989年   11篇
  1988年   17篇
  1987年   7篇
  1985年   10篇
  1984年   16篇
  1983年   11篇
  1982年   12篇
  1981年   21篇
  1980年   17篇
  1977年   11篇
  1976年   11篇
  1975年   9篇
  1974年   6篇
  1973年   7篇
  1965年   5篇
  1852年   5篇
排序方式: 共有1813条查询结果,搜索用时 15 毫秒
1.
An initial proteomic analysis of the cuprizone mouse model to characterise the breadth of toxicity by assessing cortex, skeletal muscle, spleen and peripheral blood mononuclear cells. Cuprizone treated vs. control mice for an initial characterisation. Select tissues from each group were pooled, analysed in triplicate using two-dimensional gel electrophoresis (2DE) and deep imaging and altered protein species identified using liquid chromatography tandem mass spectrometry (LC/MS/MS). Forty-three proteins were found to be uniquely detectable or undetectable in the cuprizone treatment group across the tissues analysed. Protein species identified in the cortex may potentially be linked to axonal damage in this model, and those in the spleen and peripheral blood mononuclear cells to the minimal peripheral immune cell infiltration into the central nervous system during cuprizone mediated demyelination. Primary oligodendrocytosis has been observed in type III lesions in multiple sclerosis. However, the underlying mechanisms are poorly understood. Cuprizone treatment results in oligodendrocyte apoptosis and secondary demyelination. This initial analysis identified proteins likely related to axonal damage; these may link primary oligodendrocytosis and secondary axonal damage. Furthermore, this appears to be the first study of the cuprizone model to also identify alterations in the proteomes of skeletal muscle, spleen and peripheral blood mononuclear cells. Notably, protein disulphide isomerase was not detected in the cuprizone cohort; its absence has been linked to reduced major histocompatibility class I assembly and reduced antigen presentation. Overall, the results suggest that, like experimental autoimmune encephalomyelitis, results from the standard cuprizone model should be carefully considered relative to clinical multiple sclerosis.  相似文献   
2.
Ciliated tracheal epithelia cell cultures were investigated immunocytochemically with anti-tubulin and colloidal gold. When rabbit tracheal cultures were fixed in paraformaldehyde, treated with acetone, anti-tubulin and a second antibody coupled to FITC, fluorescence was associated with cytoskeletal and axonemal microtubules. Cilia covering the apical surface of the ciliated tracheal cells fluoresced very brightly thus facilitating identification of this cell type. Electron microscopy of tracheal cultures fixed as above, treated with Triton-X 100 and incubated in anti-tubulin and protein A coupled to colloidal gold resulted in the highly specific localization of tubulin in ciliary axonemes and basal bodies. Omission of primary or secondary antibody resulted in extremely low levels of fluorescence while no colloidal gold particles could be detected in cultures at the electron microscopy level when rabbit anti-tubulin was omitted.  相似文献   
3.
The review focuses on the multiple separating regimes that offers the free flow electrophoresis technique: free flow zone electrophoresis, isoelectric focusing, isotachophoresis, free flow step electrophoresis. Also, the feasibility to apply either interval or continuous flow electrophoresis is evaluated. The free flow zone electrophoresis regime is generally selected for the separation of cells, organelles and membranes while the other regimes find their largest fields of applications in the purification of proteins and peptides. The latter regimes present the highest resolution efficiency. Therefore, a large part of this review is devoted to the applicabilities of these different regimes to the purification of organelles and membrane vesicles at the preparative scale. Recent developments, both in instrumentation and procedures, are described. The major achievements in plant membrane fractionation obtained with free flow electrophoresis are outlined. The related procedures are both analytical and preparative: they separate tonoplast and plasma membrane simultaneously from the same homogenate, they discriminate for one type of membrane vesicles of opposite orientation, and process large quantities of membrane material by reason of the continuous flow mode. Recent advances using electromigration techniques that permit confirmation of the dynamic state of membranes, characterisation of complex membrane-dependent functions and discovery of new membrane-localised activities are presented.  相似文献   
4.
5.
6.
Cell separation by counterflow centrifugal elutriation (CCE) or free flow electrophoresis (FFE) is performed at lower frequency than cell cloning and antibody-dependent, magnetic or fluorescence-activated cell sorting. Nevertheless, numerous recent publications confirmed that these physical cell separation methods that do not include cell labeling or cell transformation steps, may be most useful for some applications. CCE and FFE have proved to be valuable tools, if homogeneous populations of normal healthy untransformed cells are required for answering scientific questions or for clinical transplantation and cells cannot be labeled by antibodies, because suitable antibodies are not available or because antibody binding to a cell surface would induce the cell reaction which should be investigated on purified cells or because antibodies bound to the surface hamper the use of the isolated cells. In addition, the methods are helpful for studying the biological reasons for, or effects of, changes in cell size and cellular negative surface charge density. Although the value of the methods was confirmed in recent years by a considerable number of important scientific results, activities to further develop and improve the instruments have, unfortunately, declined.  相似文献   
7.

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH–bimane-conjugate (GS–B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS–B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.

  相似文献   
8.
Human life expectancy in developed countries has increased steadily for over 150 years, through improvements in public health and lifestyle. More people are hence living long enough to suffer age-related loss of function and disease, and there is a need to improve the health of older people. Ageing is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. This view has been reinforced by the realization that ageing is a disadvantageous trait that evolves as a side effect of mutation accumulation or a benefit to the young, because of the decline in the force of natural selection at later ages. However, important recent discoveries are that mutations in single genes can extend lifespan of laboratory model organisms and that the mechanisms involved are conserved across large evolutionary distances, including to mammals. These mutations keep the animals functional and pathology-free to later ages, and they can protect against specific ageing-related diseases, including neurodegenerative disease and cancer. Preliminary indications suggest that these new findings from the laboratory may well also apply to humans. Translating these discoveries into medical treatments poses new challenges, including changing clinical thinking towards broad-spectrum, preventative medicine and finding novel routes to drug development.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号