首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   18篇
  2019年   1篇
  2017年   2篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   8篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1971年   1篇
  1954年   1篇
排序方式: 共有96条查询结果,搜索用时 39 毫秒
1.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
2.
Continuous positive airway pressure (CPAP) is known to produce activation of the expiratory muscles. Several factors may determine whether this activation can assist inspiration. In this study we asked how and to what extent expiratory muscle contraction can assist inspiration during CPAP. Respiratory muscle response to CPAP was studied in eight supine anesthetized dogs. Lung volume and diaphragmatic initial length were defended by recruitment of the expiratory muscles. At the maximum CPAP of 18 cmH2O, diaphragmatic initial lengths were longer than predicted by the passive relationship by 52 and 46% in the costal and crural diaphragmatic segments, respectively. During tidal breathing after cessation of expiratory muscle activity, a component of passive inspiration occurred before the onset of inspiratory diaphragmatic electromyogram (EMG). At CPAP of 18 cmH2O, passive inspiration represented 24% of the tidal volume (VT) and tidal breathing was within the relaxation characteristic. Diaphragmatic EMG decreased at CPAP of 18 cmH2O; however, VT and tidal shortening were unchanged. We identified passive and active components of inspiration. Passive inspiration was limited by the time between the cessation of expiratory activity and the onset of inspiratory activity. We conclude that increased expiratory activity during CPAP defends diaphragmatic initial length, assists inspiration, and preserves VT. Even though breathing appeared to be an expiratory act, there remained a significant component of active inspiratory diaphragmatic shortening, and the major portion of VT was produced during active inspiration.  相似文献   
3.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
4.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
5.
The Drosophila gene, pixie, is an essential gene required for normal growth and translation. Pixie is the fly ortholog of human RLI, which was first identified as an RNase L inhibitor, and yeast Rli1p, which has recently been shown to play a role in translation initiation and ribosome biogenesis. These proteins are all soluble ATP-binding cassette proteins with two N-terminal iron-sulfur clusters. Here we demonstrate that Pixie can be isolated from cells in complex with eukaryotic translation initiation factor 3 and ribosomal proteins of the small subunit. In addition, our analysis of polysome profiles reveals that double-stranded RNA interference-mediated depletion of Pixie results in an increase in empty 80 S ribosomes and a corresponding decrease in polysomes. Thus Pixie is required for normal levels of translation initiation. We also find that Pixie associates with the 40 S subunit on sucrose density gradients in an ATP-dependent manner. Our observations are consistent with Pixie playing a catalytic role in the assembly of complexes required for translation initiation. Thus, the function of this soluble ATP-binding cassette domain protein family in translation initiation has been conserved from yeast through to higher eukaryotes.  相似文献   
6.
7.
8.
Summary : FT is a tool written in C++, which implements the Fourier analysis method to locate periodicities in aminoacid or DNA sequences. It is provided for free public use on a WWW server with a Java interface. Availability : The server address is http://o2.db. uoa.gr/FT Contact : shamodr@atlas.uoa.gr   相似文献   
9.
The target of rapamycin (TOR) complex 1 (TORC1) signaling pathway is a critical regulator of translation and cell growth. To identify novel components of this pathway, we performed a kinome-wide RNA interference (RNAi) screen in Drosophila melanogaster S2 cells. RNAi targeting components of the p38 stress-activated kinase cascade prevented the cell size increase elicited by depletion of the TOR negative regulator TSC2. In mammalian and Drosophila tissue culture, as well as in Drosophila ovaries ex vivo, p38-activating stresses, such as H2O2 and anisomycin, were able to activate TORC1. This stress-induced TORC1 activation could be blocked by RNAi against mitogen-activated protein kinase kinase 3 and 6 (MKK3/6) or by the overexpression of dominant negative Rags. Interestingly, p38 was also required for the activation of TORC1 in response to amino acids and growth factors. Genetic ablation either of p38b or licorne, its upstream kinase, resulted in small flies consisting of small cells. Mutants with mutations in licorne or p38b are nutrition sensitive; low-nutrient food accentuates the small-organism phenotypes, as well as the partial lethality of the p38b null allele. These data suggest that p38 is an important positive regulator of TORC1 in both mammalian and Drosophila systems in response to certain stresses and growth factors.The target of rapamycin, TOR, is a highly conserved serine/threonine kinase that is a critical regulator of cell growth. It is a core component of two signaling complexes, TORC1 and TORC2 (60, 74). TORC1 is defined by the presence of Raptor in the complex, while TORC2 contains Rictor. Rictor and Raptor are mutually exclusive. Activation of the TORC1 pathway leads to increased protein translation, increased cell size, and increased proliferation, making this pathway an important target for emerging cancer therapies. Rapamycin is an inhibitor of TORC1 that is commonly used as an immunosuppressant following kidney transplantation (51). At least three analogs of rapamycin are currently being tested in solid and hematological tumors and have shown some promising results (21).The TORC1 pathway responds to numerous inputs, sensing both the desirability of and the capacity for growth. Many of these pathways control TORC1 signaling through phosphorylation of the tuberous sclerosis protein TSC2. TSC2 associates with TSC1 to form a heterodimeric GTPase-activating protein complex (GAP) that inactivates the small GTPase Rheb (24, 29, 67). While the exact molecular mechanism remains a topic of debate, activation of Rheb promotes the kinase activity of TORC1 (24, 29, 67). Rheb is required for the activation of TORC1 in response to both amino acids and growth factors (55, 62). In Drosophila melanogaster, mutation of either TOR or Rheb inhibits growth, leading to reduced body size and reduced cell size in mutant clones (42, 64). Mutation of either TSC1 or TSC2 has the predicted opposite effect, as tissue deficient for either of these proteins overgrows and contains large cells (49, 66).TORC1 is activated via the phosphatidylinositol 3′ kinase (PI3′K) pathway by growth-promoting mitogens, such as insulin and growth factors. Drosophila mutants with mutations of PI3′K pathway components have size phenotypes similar to those of the TOR and Rheb mutants (71). In mammalian cells, the PI3′K-mediated activation of TORC1 occurs at least in part through the phosphorylation of TSC2 by the PI3′K target AKT (30, 50). Interestingly, mutation of these residues in Drosophila has no impact on TSC2 function in vivo, suggesting that there may be other mechanisms through which PI3′K can activate Drosophila TOR (20). Recent work has suggested that the proline-rich AKT substrate PRAS40 may provide part of this link (23, 59, 69, 70). In addition, signaling through RAS activates extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK), which can phosphorylate TSC2 and Raptor to activate TORC1 (13, 40, 56). There are also likely to be additional mechanisms through which growth factors activate Drosophila TOR that have not yet been identified.TORC1 activity is also controlled by the intracellular building blocks necessary to support cellular growth. The energy-sensing AMP-activated protein kinase (AMPK) pathway relays information about the energy status of the cell to TORC1 by phosphorylating TSC2. Unlike the inactivating phosphorylation of TSC2 by Akt, phosphorylation of TSC2 by AMPK promotes the GAP activity of the TSC complex (31). AMPK also phosphorylates Raptor, leading to decreased TORC1 activity (28). Thus, when energy levels are low, active AMPK inhibits TORC1.Amino acids also activate the TORC1 pathway, through a mechanism that requires Rheb, as well as the type III PI3′K VPS34 and the serine/threonine kinase mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3) (11, 22, 43). TORC1 thereby integrates information about the availability of amino acids and the amount of energy available for growth with growth factor signaling. Given its ancient function in adapting growth rates to environmental conditions, it is likely that TOR responds to a variety of stimuli, suggesting that many TOR control mechanisms remain to be uncovered. The Rag family of Ras-related small GTPases has recently been identified as a key component of the amino acid-sensing pathway, acting in parallel to Rheb (34, 58). Rag GTPases form heterodimers; RagA or RagB interacts with RagC or RagD. RagA and RagB are active when GTP bound, while RagC and RagD are active when bound to GDP (34, 58). Activation of the Rags by amino acids results in TOR relocalization to Rab7-containing vesicles (58). While the function of these vesicles in TORC1 signaling remains unclear, this relocalization is associated with increased TORC1 activity.TORC1 controls cell growth and translation through the phosphorylation and activation of components of the translational machinery, such as S6 kinase (S6K) and 4EBP1, an inhibitor of eukaryotic translation initiation factor 4E (eIF4E) activity (reviewed in reference 27). S6K phosphorylates the S6 ribosomal subunit, thereby increasing translation. Mice deficient for S6K1 are small and have small pancreatic beta cells and a correspondingly low level of circulating insulin (45). Mutation of the phosphorylation sites on S6 results in a similar phenotype, with small beta cells and fibroblasts (57). In Drosophila, mutation of S6K again reduces both cell and organism size (42), as does the overexpression of 4EBP (41).Interestingly, while mutation of the TORC1 pathway in mammalian cells reduces cell size by 10 to 15%, ablation of core TORC1 pathway components in Drosophila cells can affect cell size by up to 40% (73). In an attempt to identify novel components of the TORC1 pathway, we undertook an RNA interference (RNAi)-based screen of Drosophila S2 cells. We reasoned that the extreme size phenotypes observed in Drosophila cells upon TORC1 manipulations would facilitate the identification of modulators. In order to increase the likelihood of isolating novel regulators of TOR, we uncoupled TOR activity from many of its known nutritional controls by depleting TSC2 and screened for double-stranded RNAs (dsRNAs) that could reverse the cell size increase elicited by loss of TSC2. Depletion of multiple components of the p38 pathway was found to revert the TSC2 RNAi-induced cell size increase. Furthermore, activation of p38 is necessary and sufficient for the activation of TOR. Strikingly, mutation of components of the stress-activated p38 pathway in Drosophila has a similar phenotype to mutations in the TOR and insulin signaling pathway: a cell-autonomous cell size decrease, reduced body size, and a sensitization to the effects of nutritional stress.  相似文献   
10.
In Drosophila and mammals, insulin signalling can increase growth, progression through G1/S, cell size and tissue size. Here, we analyse the way insulin affects cell size and cell-cycle progression in two haemocyte-derived Drosophila cell lines. Surprisingly, we find that although insulin increases cell size, it slows the rate at which these cells increase in number. By using BrdU pulse-chase to label S-phase cells and follow their progression through the cell cycle, we show that insulin delays progression through G2/M, thereby slowing cell division. The ability of insulin to slow progression through G2/M is independent of its ability to stimulate progression through G1/S, so is not a consequence of feedback by the cell-cycle machinery to maintain cell-cycle length. Insulin's effects on progression through G2/M are mediated by dTOR/dRaptor signalling. Partially inhibiting dTOR/dRaptor signalling by dsRNAi or mild rapamycin treatment can increase cell number in cultured haemocytes and the Drosophila wing, respectively. Thus, insulin signalling can influence cell number depending on a balance between its ability to accelerate progression through G1/S and delay progression through G2/M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号