首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   27篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   9篇
  2017年   2篇
  2016年   11篇
  2015年   8篇
  2014年   14篇
  2013年   26篇
  2012年   17篇
  2011年   16篇
  2010年   12篇
  2009年   14篇
  2008年   22篇
  2007年   23篇
  2006年   29篇
  2005年   30篇
  2004年   22篇
  2003年   25篇
  2002年   22篇
  2001年   7篇
  2000年   10篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   14篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   2篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1965年   1篇
排序方式: 共有447条查询结果,搜索用时 156 毫秒
1.
We examined whether actin filaments are involved in the cAMP-dependent activation of a high affinity sodium/glucose cotransporter (SGLT1) using epithelial expression systems. The expression of enhanced green fluorescent protein-tagged SGLT1 (EGFP-SGLT1) in Madin-Darby canine kidney (MDCK) cells was revealed by Western blotting and confocal laser microscopy. 8-Br-cAMP, a membrane permeable cAMP analog, enhanced [14C]-α-methyl glucopyranoside ([14C]-AMG) uptake. Both basal and 8-Br-cAMP-elicited [14C]-AMG uptakes were inhibited by N-(2{[3-(4-bromophenyl)-2-propenyl]-amino}-ethyl)-5-isoquinolinesulfonamide (H-89), a protein kinase A inhibitor, and cytochalasin D, an actin filament formation inhibitor. Furthermore, cytochalasin D inhibited the distribution of EGFP-SGLT1 at the apical surface. These results suggest that the EGFP-SGLT1 protein is functionally expressed in the apical membrane of MDCK cells, and is up-regulated by a cAMP-dependent pathway requiring intact actin filaments.  相似文献   
2.
To elucidate the role of the spiral limbus in glucose transport in the cochlea, we analyzed the expression and localization of GLUT1, connexin26, connexin30, and occludin in the spiral limbus of the rat cochlea. GLUT1 and occludin were detected in blood vessels. GLUT1, connexin26, connexin30, and occludin were also expressed in fibrocytes just basal to the supralimbal lining cells. Connexin26 and connexin30 were present among not only these GLUT1-positive fibrocytes but also GLUT1-negative fibrocytes. In vivo glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the spiral limbus, whereas EBA was localized only in the vessels. Moreover, the gap junctional uncoupler heptanol inhibited the distribution of 6-NBDG. These findings suggest that gap junctions play an important role in glucose transport in the spiral limbus, i.e., that gap junctions mediate glucose transport from GLUT1-positive fibrocytes to GLUT1-negative fibrocytes in the spiral limbus.  相似文献   
3.
Summary Glucose is actively absorbed via a Na+-dependent active glucose transporter (Na-GT) in the small intestine. We raised a polyclonal antibody against the peptide corresponding to amino acids 564–575 of rabbit intestinal Na-GT, and localized it immunohistochemically in the rat jejunum. By means of immunofluorescence staining, Na-GT was located at the brush border of the absorptive epithelial cells of the intestinal villi. Electron-microscopic examination showed that Na-GT was localized at the plasma membrane of the apical microvilli of these cells. Little Na-GT was found at the basolateral plasma membrane. Along the crypt-villus axis, all of the absorptive epithelial cells in the villus were positive for Na-GT. In addition to the brush border staining, the supranuclear positive staining, which was shown to be the Golgi apparatus by use of electron microscopy, was seen in cells located between the base to the middle of the villus. Cells in crypts exhibited little or no staining for Na-GT. Goblet cells scattered in the intestinal epithelium were negative for Na-GT staining. These observations show that Na-GT is specific to the apical plasma membrane of the absorptive epithelial cells, and that the onset of Na-GT synthesis may occur near the crypt-villus junction.  相似文献   
4.
Summary (±)-Tricarbonyl 6-3-methylbenzyl alcohol)chromium was resolved to of 100%e.e. and of 92%e.e. by lipase-catalyzed transesterifications arranged in homotopic and heterotopic double resolutions.  相似文献   
5.
Summary Two-dimensional (2D)1H NMR experiments using deuterium labeling have been carried out to investigate the solution structure of ribonuclease HI (RNase HI) fromEscherichia coli (E. coli), which consists of 155 amino acids. To simplify the1H NMR spectra, two fully deuterated enzymes bearing several prototed amino acids were prepared from an RNase HI overproducing strain ofE. coli grown in an almost fully deuterated medium. One enzyme was selectively labeled by protonated His, He. Val. and Leu. The other was labeled by only protonated His and Ile. The 2D1H NMR spectra of these deuterated R Nase H1 proteins, selectively labeled with protonated amino acids, were much more simple than those of the normally protonated enzyme. The simplified spectra allowed unambiguous assignments of the resonance peaks and connectivities in COSY and NOESY for the side-chain protons. The spin-lattice relaxation times of the side-chain protons of the buried His residue of the deuterated enzyme became remarkably longer than that of the protonated enzyme. In contrast, the relaxation times of the side-chain protons of exposed His residues remained essentially unchanged.  相似文献   
6.
A five-month-old Japanese boy was found to have marked glycogen accumulation only in the heart. A survey of enzymes revealed normal activities of phosphorylase, cyclic AMP-dependent protein kinase, acid maltase and amylo-1,6-glucosidase. However, the heart had capacity of activating neither rabbit muscle phosphorylase b nor endogenous phosphorylase b, which was converted to active form only when supplemented rabbit muscle phosphorylase kinase. In contrast to the heart, activities of phosphorylase kinase were found within normal levels in other organ tissues so far tested. These findings indicate that the present case of the cardiac glycogenosis is caused by deficiency of cardiac phosphorylase kinase.  相似文献   
7.
Most ofthe human Not I linking clones identified to date areconsidered to be derived from CpG islands because ofthe recognitionsequence of this enzyme, and CpG islands have been reportedto be located around the 5' regions of genes. As a pilot study,we determined the complete nucleotide sequence (41,924 bp) ofa human cosmid clone (LL21NC02Q7A10) containing the marker D21S246originating from a Not I linking clone. As a result of sequenceanalysis, we successfully mapped and revealed the genomic genestructure for KIAA0002 previously reported as a cDNA clone.This gene consists of 15 exons and was shown to exist at theD21S246 locus on human chromosome 21q21.3–q22.1. Theseresults demonstrated that genomic marker-anchored DNA sequencingis a useful approach for the human genome project.  相似文献   
8.
Cerebrospinal Fluid Nitrite/Nitrate Levels in Neurologic Diseases   总被引:5,自引:0,他引:5  
Abstract: Nitric oxide has been proposed to mediate cytotoxic effects in inflammatory diseases. To investigate the possibility that overproduction of nitric oxide might play a role in the neuropathology of inflammatory and noninflammatory neurological diseases, we compared levels of the markers of nitric oxide, nitrite plus nitrate, in the CSF of controls with those in patients with various neurologic diseases, including Huntington's and Alzheimer's disease, amyotrophic lateral sclerosis, and HIV infection. We found that there were no significant increases in the CSF levels of these nitric oxide metabolites, even in patients infected with HIV or in monkeys infected with poliovirus, both of which have significantly elevated levels of the neurotoxin quinolinic acid and the marker of macrophage activation, neopterin. However, CSF quinolinic acid, neopterin, and nitrite/nitrate levels were significantly increased in a small group of patients with bacterial and viral meningitis.  相似文献   
9.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   
10.
Uptake of glucose-6-phosphate by microsomes of hepatocyte in rats, human controls and patients with glycogen storage disease type Ia and Ib was studied. In rat the uptake of glucose-6-phosphate increased rapidly and reached to a plateau, but mannose-6-phosphate was not accumulated. These findings indicate that a glucose-6-phosphate specific transport system exists in the microsomal membrane. In human controls and patients with glycogen storage disease type Ia the uptake of glucose-6-phosphate was clearly observed. On the other hand, no accumulation of it was detected in a patient with glycogen storage disease type Ib. These data provide a direct evidence of the defect in the glucose-6-phosphate transport system of hepatic microsomal membrane in glycogen storage disease type Ib.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号