首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
  2001年   3篇
  1998年   2篇
  1993年   1篇
  1987年   1篇
排序方式: 共有26条查询结果,搜索用时 125 毫秒
1.
In barley seedlings (Hordeum vulgare L.) during two days after irradiation of shoots with UV-B (0.5 W/m2, 6 h), the rate of elongation of primary roots decreased 2–3 times compared to that in control plants. The modulus of elasticity of roots (ε) increased at most twofold in 12 h after the onset of irradiation; the hydraulic conductivity (L p) diminished by a factor of two in 12 h, and the root osmotic pressure gradually decreased by 0.08 MPa in 24 h. Changes in ε and L p were shown to be related to oxidative stress in growing roots, which was evidenced from the increase in H2O2 level up to 15-fold increase in 6 h and in activity of guaiacol peroxidase (3.5-fold in 12 h). After 48 h, the characteristics of oxidative metabolism and root characteristics ε and L p became identical in untreated and treated plants. On the third day, the rate of root growth in treated plants reached its initial value. It is concluded that the main causes of retardation of root growth under these conditions were as follows: the increase in cell wall rigidity related to formation of oxidative cross-links in the apoplast and the decrease in root osmotic pressure due to limited transport of assimilates from irradiated leaves. After the intensity of UV-B irradiation applied to shoots was enhanced (1.6 W/m2, 4 h), another physiological status of roots was observed on the 2nd day characterized by twofold increase in L p, tenfold decreased root elongation rate, and by a progressing increase of root diameter in growing roots. The comparison of root responses induced by irradiation of shoots with the root responses to sodium salicylate and ABA suggests that both agents might participate in the transmission of signals from irradiated leaves to roots.  相似文献   
2.
3.
In the submerged trichomes of floating-moss (Salvinia auriculataAubl.) and the roots of the higher water plant Trianea bogotensisKarst., the dependence of the electrical resistance of intercellular junctions on the presence of the agents that destroy microfilaments (cytochalasin B) and microtubules (colchicine) was investigated using the microelectrode technique. The resistance of the junctions (R c) was estimated taking into account the input resistance and the coefficient of intercellular electrical communication. Should the cells be connected via symplast, R cwill describe the resistance of plasmodesmata. Cytochalasin B (3–30 g/ml) reversibly changed R cduring the first minutes after application. The extent of the change depended on the concentration of the inhibitor; its character of action depended on the initial strength of intercellular communication. When the initial conductance of the contact was high, cytochalasin B elevated the resistance; when it was low, the inhibitor decreased it. In all the experiments, cytochalasin B reduced the input resistance (R i) that suggests the dependence of plasma membrane resistance on actin cytoskeleton. The effect of colchicine (0.1–1.0 mM) on R iand R cwas observed only when the cellular membrane was hyperpolarized or after a prolonged action of the inhibitor (for about 0.5 h). It was concluded that the electrical conductance of plasmodesmata and plasma membrane depended on the state of actin cytoskeleton. A complex and probably mediated interaction of microtubules with the processes affecting these characteristics of the cells was suggested.  相似文献   
4.
5.
Abstract: Many articulated brachiopods experience marked life habit variations during ontogeny because they experience their fluid environment at successively higher Reynolds numbers, and they can change the configuration of their inhalant and exhalant flows as body size increases. We show that the extant brachiopod Terebratalia transversa undergoes a substantial ontogenetic change in reorientation governed by rotation around the pedicle. T. transversa′s reorientation angle (maximum ability to rotate on the pedicle) decreases during ontogeny, from 180 degrees in juveniles to 10–20 degrees in individuals exceeding 5 mm, to complete cessation of rotation in individuals larger than 10 mm. Rotation ability is substantially reduced after T. transversa achieves the adult lophophore configuration and preferred orientation with respect to ambient water currents at a length of 2.5–5 mm. We hypothesize that the rotation angle of T. transversa is determined mainly by the position of ventral and dorsal points of attachment of dorsal pedicle muscles relative to the pedicle. T. transversa shows a close correlation between the ontogenetic change in reorientation angle and ontogeny of morphological traits that are related to points of attachment of dorsal pedicle muscles, although other morphological features can also limit rotation in the adult stage. The major morphological change in cardinalia shape and the observed reduction of rotation affect individuals 2.5–10 mm in length. The position of ventral insertions of dorsal pedicle muscles remains constant, but contraction of dorsal pedicle muscles is functionally handicapped because dorsal insertions shift away from the valve midline, rise above the dorsal valve floor, and become limited by a wide cardinal process early in ontogeny (<5 mm). The rate of increase of cardinal process width and of distance between dorsal pedicle muscle scars substantially decreases in the subadult stage (5–10 mm), and most of the cardinalia shell traits grow nearly isometrically in the adult stage (>10 mm). T. transversa attains smaller shell length in crevices than on exposed substrates. The proportion of small‐sized individuals and population density is lower on exposed substrates than in crevices, indicating higher juvenile mortality on substrates prone to grazing and physical disturbance. The loss of reorientation ability can be a consequence of morphological changes that strengthen substrate attachment and maximize protection against biotic or physical disturbance (1) by minimizing torques around the pedicle axis and/or (2) by shifting energy investments into attachment strength at the expense of the cost involved in reorientation.  相似文献   
6.
Spring oilseed rapeBrassica napus L. ssp.oleifera cv. HM-81 was transformed with TL-DNA of the Ri plasmid of the agropine strainAgrobacterium rhizogenes 15834. Selfed progenies (R2 and R3 generations) were studied for changes in values of growth characteristics and fatty acids contents. Transformants are ‘homozygous’ for TL-DNA. Both generations of transformants differed significantly from the nontransformed control plants in reduced length, lower number of pods per plant, lower total mass of seeds and the higher number of branches. The contents of palmitic, linoleic and linolenic acids were significantly higher in transformants when compared with the control. On the contrary, the contents of both stearic and oleic acids were in most of transformants significantly lower. Only traces of erucic acid (less than 0.05 % ) were found, both in transformed and nontransformed plants.  相似文献   
7.
The root growth rate in barley (Hordeum vulgare L.) seedlings was measured in parallel with temporal changes in longitudinal (δl) and transverse (δD/D) cell-wall extensibilities and membrane hydraulic conductivity (L p) in the root extension zone. The root growth rate and biophysical parameters examined were sensitive to UV-B irradiation of shoots or roots and to excessive content of ammonium, glutamate, or nickel in the nutrient medium. The root responses to the above treatments were compared with the effects of abscisic acid, salicylate, hydrogen peroxide, diethylstilbestrol, α-naphthyl acetate, oryzalin, and ionomycin. The progressive reduction of root growth under the action of various stressors was accompanied by typical temporal patterns of the growth zone parameters: the δl extensibility declined monotonically, while δD/D and L p changed nonmonotonically, exhibiting the reversion from the initial decrease to the eventual increase above the control values. The decline of δl indicated that the root growth suppression was mainly due to changes in cell-wall mechanical properties caused probably by disorganization of cortical microtubules. It was found that the decline in δD/D and L p was caused primarily by the appearance of oxidative stress, disorders in cytoplasmic H+ homeostasis in root cells, and the consequent transient activation of the plasmalemmal H+-pump. Conversely, the increase in δD/D and L p upon the abrupt retardation of root growth was presumably caused by the increase in cytoplasmic Ca2+ content, disassembling of cortical microtubules, and by partial inhibition of the plasmalemmal H+-pump. The reversion of δD/D and L p changes upon progressive reduction of root growth can be used as an indicator to distinguish moderate and severe stress conditions in the root growth zone. Furthermore, this reversion indicates the increasing disbalance in the homeostasis of reactive oxygen species, cytosolic Ca2+, and cytosolic H+ upon severe stress.  相似文献   
8.

In 59 samples of periphyton and phytoplankton collected in 2002 - 2003 from the Nahal Qishon (Qishon River), northern Israel, we found 178 species from seven divisions of algae and cyanoprocaryotes. Diatoms, clorophytes, and cyanoprocaryotes prevail. Nitzschia and Navicula (Bacillariophyta) are the most abundant. Most of the species are cosmopolitan or widespread, except Lagynion janei (Chrysophyta), which is endemic for the Mediterranean Realm. About 17% of species (26) are new for Israel and five of them represent the first recorded genera: Crinalium endophyticum Crow, Actinocyclus normanii (Gregory) Hustedt, Rhizoclonium hieroglyphicum (Agardh) Kütz (Chlorophyta), Lagynion janei Bourelly, and Stylococcus aureus Chodat. Most of them come from a rare riverine assemblage with red alga Audouinella pygmea, as well as from the estuarine assemblage. Alkaliphiles predominate among the indicators of acidity, with few acidophiles confined to the communities under the impact of industrial wastes. Among the indicators of salinity, most numerous are the oligohalobien-indifferents and species adapted to a moderate salinity level. The relative species richness of ecological groups and the indices of saprobity are correlated with changes in conductivity, pH, and N-nitrate concentration. Indicators of organic pollution fall in the range of betameso- to alfamesosaprobic self-purification grades. Our studies show ecological significance of the Nahal Qishon as a model for a strongly disturbed aquatic ecosystem in the coastal zone of eastern Mediterranean.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号