首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   18篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   9篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   9篇
  2014年   17篇
  2013年   20篇
  2012年   18篇
  2011年   27篇
  2010年   15篇
  2009年   13篇
  2008年   12篇
  2007年   15篇
  2006年   19篇
  2005年   22篇
  2004年   13篇
  2003年   19篇
  2002年   26篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
排序方式: 共有321条查询结果,搜索用时 609 毫秒
1.
Thirty postmenopausal women (11 omnivores, 10 vegetarians and 9 apparently healthy women with surgically removed breast cancer) were investigated with regard to the association of their urinary excretion of estrogens, lignans and isoflavonoids (all diphenols) with plasma sex hormone binding globulin (SHBG). A statistically significant positive correlation between urinary total diphenol excretion and plasma SHBG was found which remained statistically significant after elimination of the confounding effect of body mass determined by body mass index (BMI). Furthermore we found a statistically significant negative correlation between plasma SHBG and urinary excretion of 16α-hydroxyestrone and estriol which also remained significant after eliminating the effect of BMI. Furthermore we observed that enterolactone (Enl) stimulates the synthesis of SHBG by HepG2 liver cancer cells in culture acting synergistically with estradiol and at physiological concentrations. Enl was rapidly conjugated by the liver cells, mainly to its monosulfate. Several lignans and the isoflavonoids daidzein and equol were found to compete with estradiol for binding to the rat uterine type II estrogen binding site (the s.c. bioflavonoid receptor). It is suggested that lignans and isoflavonoids may affect uptake and metabolism of sex hormones by participating in the regulation of plasma SHBG levels and in this way influence their biological activity and that they may inhibit cancer cell growth like some flavonoids by competing with estradiol for the type II estrogen binding sites.  相似文献   
2.
3.
Non-productive cellulase adsorption onto lignin is a major inhibitory mechanism preventing enzymatic hydrolysis of lignocellulosic feedstocks. Therefore, understanding of enzyme–lignin interactions is essential for the development of enzyme mixtures and processes for lignocellulose hydrolysis. We have studied cellulase–lignin interactions using model enzymes, Melanocarpus albomyces Cel45A endoglucanase (MaCel45A) and its fusions with native and mutated carbohydrate-binding modules (CBMs) from Trichoderma reesei Cel7A. Binding of MaCel45A to lignin was dependent on pH in the presence and absence of the CBM; at high pH, less enzyme bound to isolated lignins. Potentiometric titration of the lignin preparations showed that negatively charged groups were present in the lignin samples and that negative charge in the samples was increased with increasing pH. The results suggest that electrostatic interactions contributed to non-productive enzyme adsorption: Reduced enzyme binding at high pH was presumably due to repulsive electrostatic interactions between the enzymes and lignin. The CBM increased binding of MaCel45A to the isolated lignins only at high pH. Hydrophobic interactions are probably involved in CBM binding to lignin, because the same aromatic amino acids that are essential in CBM–cellulose interaction were also shown to contribute to lignin-binding.  相似文献   
4.
Isolates from gardening waste compost and 38 culture collection microbes were grown on agar plates at pH 4.0 with the cutinase model substrate polycaprolactone as a carbon source. The strains showing polycaprolactone hydrolysis were cultivated in liquid at acidic pH and the cultivations were monitored by assaying the p-nitrophenyl butyrate esterase activities. Culture supernatants of four strains were analyzed for the hydrolysis of tritiated apple cutin at different pHs. Highest amounts of radioactive hydrolysis products were detected at pHs below 5. The hydrolysis of apple cutin by the culture supernatants at acidic pH was further confirmed by GC–MS analysis of the hydrolysis products. On the basis of screening, the acidic cutinase from Aspergillus niger CBS 513.88 was chosen for heterogeneous production in Pichia pastoris and for analysis of the effects of pH on activity and stability. The recombinant enzyme showed activity over a broad range of pHs with maximal activity between pH 5.0 and 6.5. Activity could be detected still at pH 3.5.  相似文献   
5.
The lignin-degrading, biopulping white-rot fungus Physisporinus rivulosus secretes several laccases of distinct features such as thermostability, extremely low pH optima and thermal activation for oxidation of phenolic substrates. Here we describe the cloning, heterologous expression and structural and enzymatic characterisation of two previously undescribed P. rivulosus laccases. The laccase cDNAs were expressed in the methylotrophic yeast Pichia pastoris either with the native or with Saccharomyces cerevisiae α-factor signal peptide. The specific activity of rLac1 and rLac2 was 5 and 0.3 μkat/μg, respectively. However, mutation of the last amino acid in the rLac2 increased the specific laccase activity by over 50-fold. The recombinant rLac1 and rLac2 enzymes demonstrated low pH optima with both 2,6-dimethoxyphenol (2,6-DMP) and 2,2′-azino-bis(3-ethylbenzathiazoline-6-sulfonate). Both recombinant laccases showed moderate thermotolerance and thermal activation at +60 °C was detected with rLac1. By homology modelling, it was deduced that Lac1 and Lac2 enzymes demonstrate structural similarity with the Trametes versicolor and Trametes trogii laccase crystal structures. Comparison of the protein architecture at the reducing substrate-binding pocket near the T1-Cu site indicated the presence of five amino acid substitutions in the structural models of Lac1 and Lac2. These data add up to our previous reports on laccase production by P. rivulosus during biopulping and growth on Norway spruce. Heterologous expression of the novel Lac1 and Lac2 isoenzymes in P. pastoris enables the detailed study of their properties and the evaluation of their potential as oxidative biocatalysts for conversion of wood lignin, lignin-like compounds and soil-polluting xenobiotics.  相似文献   
6.
7.
The definition of the precise molecular composition of membranous replication compartments is a key to understanding the mechanisms of virus multiplication. Here, we set out to investigate the protein composition of the potyviral replication complexes. We purified the potyviral 6K2 protein‐induced membranous structures from Potato virus A (PVA)‐infected Nicotiana benthamiana plants. For this purpose, the 6K2 protein, which is the main inducer of potyviral membrane rearrangements, was expressed in fusion with an N‐terminal Twin‐Strep‐tag and Cerulean fluorescent protein (SC6K) from the infectious PVA cDNA. A non‐tagged Cerulean‐6K2 (C6K) virus and the SC6K protein alone in the absence of infection were used as controls. A purification scheme exploiting discontinuous sucrose gradient centrifugation followed by Strep‐tag‐based affinity chromatography was developed. Both (+)‐ and (–)‐strand PVA RNA and viral protein VPg were co‐purified specifically with the affinity tagged PVA‐SC6K. The purified samples, which contained individual vesicles and membrane clusters, were subjected to mass spectrometry analysis. Data analysis revealed that many of the detected viral and host proteins were either significantly enriched or fully specifically present in PVA‐SC6K samples when compared with the controls. Eight of eleven potyviral proteins were identified with high confidence from the purified membrane structures formed during PVA infection. Ribosomal proteins were identified from the 6K2‐induced membranes only in the presence of a replicating virus, reinforcing the tight coupling between replication and translation. A substantial number of proteins associating with chloroplasts and several host proteins previously linked with potyvirus replication complexes were co‐purified with PVA‐derived SC6K, supporting the conclusion that the host proteins identified in this study may have relevance in PVA replication.  相似文献   
8.
Biological Invasions - Native to the Ponto-Caspian region, the benthic round goby (Neogobius melanostomus) has invaded several European inland waterbodies as well as the North American Great Lakes...  相似文献   
9.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   
10.
It has been often stated that the overall pattern of human maternal lineages in Europe is largely uniform. Yet this uniformity may also result from an insufficient depth and width of the phylogenetic analysis, in particular of the predominant western Eurasian haplogroup (Hg) H that comprises nearly a half of the European mitochondrial DNA (mtDNA) pool. Making use of the coding sequence information from 267 mtDNA Hg H sequences, we have analyzed 830 mtDNA genomes, from 11 European, Near and Middle Eastern, Central Asian, and Altaian populations. In addition to the seven previously specified subhaplogroups, we define fifteen novel subclades of Hg H present in the extant human populations of western Eurasia. The refinement of the phylogenetic resolution has allowed us to resolve a large number of homoplasies in phylogenetic trees of Hg H based on the first hypervariable segment (HVS-I) of mtDNA. As many as 50 out of 125 polymorphic positions in HVS-I were found to be mutated in more than one subcluster of Hg H. The phylogeographic analysis revealed that sub-Hgs H1*, H1b, H1f, H2a, H3, H6a, H6b, and H8 demonstrate distinct phylogeographic patterns. The monophyletic subhaplogroups of Hg H provide means for further progress in the understanding of the (pre)historic movements of women in Eurasia and for the understanding of the present-day genetic diversity of western Eurasians in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号