首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Inheritance of male sterility was studied in the gynodioecious species Plantago coronopus using five plants and their descendants from an area of ~50 m(2) from each of four locations. In each location, crosses between these five plants yielded the entire array of possible sex phenotypes. Both nuclear and cytoplasmic genes were involved. Emphasis is placed on the nuclear (restorer) genetics of two cytoplasmic types. For both types, multiple interacting nuclear genes were demonstrated. These genes carried either dominant or recessive restorer alleles. The exact number of genes involved could not be determined, because different genetic models could be proposed for each location and no common genetic solution could be given. At least five genes, three with dominant and two with recessive restorer allele action, were involved with both cytoplasmic types. Segregation patterns of partially male sterile plants suggested that they are due to incomplete dominance at restorer loci. Restorer genes interact in different ways. In most instances models with independent restorer gene action were sufficient to explain the crossing results. However, for one case we propose a model with epistatic restorer gene action. There was a consistent difference in the segregation of male sterility between plants from the two cytoplasmic types. Hermaphrodites of cytoplasmic type 2 hardly segregated male steriles, in contrast to plants with cytoplasmic type 1.  相似文献   
2.
3.
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.  相似文献   
4.
This article is a summary report of the international conference "Forest ecosystem genomics and adaptation" organized by the EVOLTREE Network of Excellence in San Lorenzo de El Escorial (Madrid), Spain, from 9 to 11 June 2010. Main achievements and results of the network are presented for the eight thematic sessions and a stakeholder session. The conference has shown that adaptive responses of trees to biotic or abiotic selection pressures can now be investigated at the gene level for traits of adaptive significance. Candidate genes have been catalogued for phenological and drought-related traits in important tree families (Salicaceae, Fagaceaea and Pinaceae), and their variation in natural populations is being explored. Genomics can now be integrated in ecological research to investigate evolutionary response to climate changes in a wide range of species. New avenues of research were also highlighted as the exploration of gene networks involved in adaptive responses and the combination of experimental and modelling approaches to disentangle components of evolutionary changes triggered by climate change. The main focus of the conference was the adaptation of trees to environmental changes. The conference was organized in eight thematic sessions ranging from genomic approaches aiming at identifying genes of adaptive significance to practical issues regarding mitigation options for combating climate change. A dialogue between scientists and end users took place in the form of an ad hoc stakeholder session. A panel of end users from various forest and policy-making institutions expressed their expectations, and the discussions with the scientists addressed the potential applications of research findings to the management of genetic resources in the context of climate changes. The conference was introduced by two keynote speakers Dr. Pierre Mathy from the European Commission, Directorate General of Research, and Dr. Allen Solomon, former National Program Leader for Global Change, US Forest Service. All the thematic sessions were introduced by high-level invited speakers from the respective fields.  相似文献   
5.
Arabidopsis thaliana has emerged as a model organism for plant developmental genetics, but it is also now being widely used for population genetic studies. Outcrossing relatives of A. thaliana are likely to provide suitable additional or alternative species for studies of evolutionary and population genetics. We have examined patterns of adaptive flowering time variation in the outcrossing, perennial A. lyrata. In addition, we examine the distribution of variation at marker genes in populations form North America and Europe. The probability of flowering in this species differs between southern and northern populations. Northern populations are much less likely to flower in short than in long days. A significant daylength by region interaction shows that the northern and southern populations respond differently to the daylength. The timing of flowering also differs between populations, and is made shorter by long days, and in some populations, by vernalization. North American and European populations show consistent genetic differentiation over microsatellite and isozyme loci and alcohol dehydrogenase sequences. Thus, the patterns of variation are quite different from those in A. thaliana, where flowering time differences show little relationship to latitude of origin and the genealogical trees of accessions vary depending on the genomic region studied. The genetic architecture of adaptation can be compared in these species with different life histories.  相似文献   
6.
The Common hamster (Cricetus cricetus) has declined by more than 99% in the westernmost part of its range in Belgium, the Netherlands and the adjacent German federal state of North Rhine-Westphalia (BNN region) during recent decades. Various conservation schemes are ongoing to support the remaining populations, including restoration of the habitat, captive breeding and reintroductions. One of the factors determining the success of conservation actions is the genetic constitution of the remaining populations. We therefore measured the genetic variation in current BNN hamster populations and compared the outcome with the genetic variation in museum samples from the historical, non-fragmented, population. Most of the current populations have lost the majority of their rare alleles and individual animals have become nearly homozygous. Since different alleles became fixed in different populations, this has resulted in strong genetic differentiation between current populations and reflects the strength of drift and inbreeding processes in small and isolated populations. Despite this differentiation, the total gene diversity of these small populations combined is not much less than that of the historical population. Hence, the main genetic difference between historical and present is not in terms of total genetic variation or number of alleles in the BNN region, but in the distribution of this variation over the populations.  相似文献   
7.
Eleven polymorphic microsatellite loci were obtained from a GA enriched genomic library, constructed from DNA of buck’s‐horn plantain (Plantago coronopus). The microsatellite loci were tested on 24 genotypes. These plants were collected from meadows along the coast, located on 11 sites ranging from the southwest to the northeast of the Netherlands. In this set of plants the isolated microsatellites were highly polymorphic with 3–24 alleles per locus and a maximum observed heterozygosity of 0.91. Some of the microsatellite loci also showed amplification in two other plantain species (P. lanceolata and P. maritima).  相似文献   
8.
We have studied a small isolated population of black grouse (Tetrao tetrix) in the Netherlands to examine the impact of isolation and reduction in numbers on genetic diversity. We compared the genetic diversity in the last extant Dutch population with Dutch museum samples and three other black grouse populations (from England, Austria and Norway, respectively) representing isolated and continuous populations. We found significantly lower allelic richness, observed and expected heterozygosities in the present Dutch population compared to the continuous populations (Austria and Norway) and also to the historical Dutch population. However, using a bottleneck test on each population, signs of heterozygosity excess were only found in the likewise isolated English population despite that strong genetic drift was evident in the present Dutch population in comparison to the reference populations, as assessed both in pairwise F(ST)and STRUCTURE analyses. Simulating the effect of a population reduction on the Dutch population from 1948 onwards, using census data and with the Dutch museum samples as a model for the genetic diversity in the initial population, revealed that the loss in number of alleles and observed heterozygosity was according to genetic drift expectations and within the standard error range of the present Dutch population. Thus, the effect of the strong decline in the number of grouse on genetic diversity was only detectable when using a reference from the past. The lack of evidence for a population reduction in the present Dutch population by using the program bottleneck was attributed to a rapidly found new equilibrium as a consequence of a very small effective population size.  相似文献   
9.
Whether humans minimize metabolic energy in gait is unknown. Gradient-based optimization could be used to predict gait without using walking data but requires a twice differentiable metabolic energy model. Therefore, the metabolic energy model of Umberger et al. (2003 Umberger BR, Gerritsen KG, Martin PE. 2003. A model of human muscle energy expenditure. Comput Methods Biomech Biomed Eng. 6(2):99111.[Taylor &; Francis Online] [Google Scholar]) was adapted to be twice differentiable. Predictive simulations of a reaching task and gait were solved using this continuous model and by minimizing effort. The reaching task simulation showed that energy minimization predicts unrealistic movements when compared to effort minimization. The predictive gait simulations showed that objectives other than metabolic energy are also important in gait.  相似文献   
10.
Natural hybrids between Ficus septica and two closely related dioecious species, F. fistulosa and F. hispida, were confirmed using amplified fragment length polymorphisms (AFLP) and chloroplast DNA markers. Ficus species have a highly species‐specific pollination mutualism with agaonid wasps. Therefore, the identification of cases in which breakdown in this sophisticated system occurs and the circumstances under which it happens is of interest. Various studies have confirmed that Ficus species are able to hybridize and that pollinator‐specificity breakdown can occur under certain conditions. This study is the first example in which hybrid identity and the presence of hybrids in the natural distribution of parental species for Ficus have been confirmed with molecular markers. Hybrid individuals were identified on three island locations in the Sunda Strait region of Indonesia. These findings support Janzen's (1979) hypothesis that breakdown in pollinator specificity is more likely to occur on islands. We hypothesized that hybrid events could occur when the population size of pollinator wasps was small or had been small in one of the parental species. Later generation hybrids were identified, indicating that backcrossing and introgression did occur to some extent and that therefore, hybrids could be fertile. The small number of hybrids found indicated that there was little effect of hybridization on parental species integrity over the study area. Although hybrid individuals were not common, their presence at multiple sites indicated that the hybridization events reported here were not isolated incidences. Chloroplast DNA haplotypes of hybrids were not derived solely from one species, suggesting that the seed donor was not of the same parental species in all hybridization events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号