首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Asymmetric dispersal is a common trait among populations, often attributed to heterogeneity and stochasticity in both environment and demography. The cumulative effects of population dispersal in space and time have been described with some success by Van Kirk and Lewis’s average dispersal success approximation (Bull Math Biol 59(1): 107–137 1997), but this approximation has been demonstrated to perform poorly when applied to asymmetric dispersal. Here we provide a comparison of different characterizations of dispersal success and demonstrate how to capture the effects of asymmetric dispersal. We apply these different methods to a variety of integrodifference equation population models with asymmetric dispersal, and examine the methods’ effectiveness in approximating key ecological traits of the models, such as the critical patch size and the critical speed of climate change for population persistence.  相似文献   

3.
Costs of dispersal   总被引:1,自引:0,他引:1  
Dispersal costs can be classified into energetic, time, risk and opportunity costs and may be levied directly or deferred during departure, transfer and settlement. They may equally be incurred during life stages before the actual dispersal event through investments in special morphologies. Because costs will eventually determine the performance of dispersing individuals and the evolution of dispersal, we here provide an extensive review on the different cost types that occur during dispersal in a wide array of organisms, ranging from micro‐organisms to plants, invertebrates and vertebrates. In general, costs of transfer have been more widely documented in actively dispersing organisms, in contrast to a greater focus on costs during departure and settlement in plants and animals with a passive transfer phase. Costs related to the development of specific dispersal attributes appear to be much more prominent than previously accepted. Because costs induce trade‐offs, they give rise to covariation between dispersal and other life‐history traits at different scales of organismal organisation. The consequences of (i) the presence and magnitude of different costs during different phases of the dispersal process, and (ii) their internal organisation through covariation with other life‐history traits, are synthesised with respect to potential consequences for species conservation and the need for development of a new generation of spatial simulation models.  相似文献   

4.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

5.
Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.  相似文献   

6.

Motivation

Although dispersal ability is one of the key features determining the spatial dynamics of plant populations and the structure of plant communities, it is also one of the traits for which we still lack data for most species. We compiled a comprehensive dataset of seed dispersal distance classes and predominant dispersal modes for most European vascular plants. Our seed dispersal dataset can be used in functional biogeography, dynamic vegetation modelling and ecological studies at local to continental scales.

Main Types of Variables Contained

Species were classified into seven ordered classes with similar dispersal distances estimated based on the predominant dispersal mode, the morphology of dispersal units (diaspores or propagules), life form, plant height, seed mass, habitat and known dispersal by humans. We evaluated our results by comparing them with dispersal distances calculated using the ‘dispeRsal’ function in R.

Spatial Location

Europe.

Time Period

Present.

Major Taxa and Level of Measurement

The seed dispersal dataset contains information on dispersal distance classes and the predominant dispersal mode for 10,327 most frequent and locally dominant European vascular plant species.

Software Format

Data are available in .csv format.  相似文献   

7.
In this paper, single-species nonautonomous dispersal models with delays are considered. An interesting result on the effect of dispersal for persistence and extinction is obtained. That is, if the species is persistent in a patch then it is also persistent in all other patches; if the species is permanent in a patch then it is also permanent in all other patches; if the species is extinct in a patch then it is also extinct in all other patches. Furthermore, some new sufficient conditions for the permanence and extinction of the species in a patch are established. The existence of positive periodic solutions is obtained in the periodic case by employing Teng and Chen's results on the existence of positive periodic solutions for functional differential equations. Received: 26 June 2000 / Revised version: 6 October 2000 / Published online: 10 April 2001  相似文献   

8.
9.
Many plant seeds travel on the wind and through animal ingestion or adhesion; however, an overlooked dispersal mode may lurk within those dispersal modes. Viable seeds may remain attached or embedded within materials birds gather for nest building. Our objective was to determine if birds inadvertently transport seeds when they forage for plant materials to build, insulate, and line nests. We also hypothesized that nest-mediated dispersal might be particularly useful for plants that use mating systems with self-fertilized seeds embedded in their stems. We gathered bird nests in temperate forests and fields in eastern North America and germinated the plant material. We also employed experimental nest boxes and performed nest dissections to rule out airborne and fecal contamination. We found that birds collect plant stem material and mud for nest construction and inadvertently transport the seeds contained within. Experimental nest boxes indicated that bird nests were not passive recipients of seeds (e.g., carried on wind), but arrived in the materials used to construct nests. We germinated 144 plant species from the nests of 23 bird species. A large proportion of the nest germinants were graminoids containing self-fertilized seeds inside stems—suggesting that nest dispersal may be an adaptive benefit of closed mating systems. Avian nest building appears as a dispersal pathway for hundreds of plant species, including many non-native species, at distances of at least 100–200 m. We propose a new plant dispersal guild to describe this phenomenon, caliochory (calio = Greek for nest).  相似文献   

10.
One of the central questions of metacommunity theory is how dispersal of organisms affects species diversity. Here, we show that the diversity–dispersal relationship should not be studied in isolation of other abiotic and biotic flows in the metacommunity. We study a mechanistic metacommunity model in which consumer species compete for an abiotic or biotic resource. We consider both consumer species specialised to a habitat patch, and generalist species capable of using the resource throughout the metacommunity. We present analytical results for different limiting values of consumer dispersal and resource dispersal, and complement these results with simulations for intermediate dispersal values. Our analysis reveals generic patterns for the combined effects of consumer and resource dispersal on the metacommunity diversity of consumer species, and shows that hump‐shaped relationships between local diversity and dispersal are not universal. Diversity–dispersal relationships can also be monotonically increasing or multimodal. Our work is a new step towards a general theory of metacommunity diversity integrating dispersal at multiple trophic levels.  相似文献   

11.
12.
Over the past decade, several species of non-indigenous ascidians have had adverse effects on a range of coastal ecosystems, and associated industries like aquaculture. One such species, the colonial ascidian Didemnum vexillum, poses a threat to the highly-valued New Zealand green-lipped mussel industry, and there is interest in whether and to what extent its spread can be managed at a regional scale (<100 km). An important component in the decision-making process for managing human-mediated pathways of spread is an understanding of D. vexillum’s natural dispersal potential. Here we use a weight-of-evidence approach, combining laboratory and field studies, to assess the role of natural dispersal mechanisms in the spread of D. vexillum. Under laboratory conditions, >70 % of D. vexillum larvae remained viable and were able to settle and undergo metamorphosis successfully following an artificial delay of 2 h. Larval viability decreased with increasing delay duration, although 10 % of larvae remained viable following a 36 h delay. A field-based study documented larval dispersal from two discrete source populations, with recruitment consistently detected on settlement plates at 250 m from source populations at one experimental site. Exponential decay models used to predict maximum larval dispersal distances at this site indicated that dispersal greater than 250 m is theoretically possible (>1 km in some situations). That being so, we recognise that the successful establishment and persistence of populations will depend on a wide range of processes not taken into account here. Our findings are supported by surveillance of D. vexillum spread in the wider study region; there are a number of instances where the species established on artificial structures that were several kilometres from known source populations, at a time when intensive regional-scale management of anthropogenic vectors was underway. Collectively, our findings indicate that D. vexillum has the ability to spread further by natural dispersal than previously assumed; probably hundreds of metres to kilometres depending on the local hydrological conditions, which has important implications for the ongoing management of this pest species world-wide.  相似文献   

13.
Dispersal, mate exchange and behavioral innovations leading to cultural dominance and replacement have obscured some of the relationships between major linguistic groups and the biological characteristics of their speakers. Recent phylogenetic reconstructions based on nuclear and mitochondrial genes have resulted in a series of hypotheses about the spread of modern humans. These hypotheses are now being tested by linguistic reconstruction. Genes, language, archaeology and geography are sometimes congruent, but new methods to assess covariation in genetic and linguistic distances are becoming necessary.  相似文献   

14.
15.
啮齿动物对种子的传播   总被引:6,自引:1,他引:5  
简要介绍了扩散、传播植物种子的啮齿动物种类、它们传播的植物种子种类,以及啮齿动物对植物种子扩散、传播的主动、被动方式及双方在这一体系中的互惠关系和可能存在的协同进化关系。  相似文献   

16.
A non-local model for dispersal with continuous time and space is carefully justified and discussed. The necessary mathematical background is developed and we point out some interesting and challenging problems. While the basic model is not new, a spread parameter (effectively the width of the dispersal kernel) has been introduced along with a conventional rate paramter, and we compare their competitive advantages and disadvantages in a spatially heterogeneous environment. We show that, as in the case of reaction-diffusion models, for fixed spread slower rates of diffusion are always optimal. However, fixing the dispersal rate and varying the spread while assuming a constant cost of dispersal leads to more complicated results. For example, in a fairly general setting given two phenotypes with different, but small spread, the smaller spread is selected while in the case of large spread the larger spread is selected. S. Martinez was partially supported by Fondecyt 1020126 and Fondecyt Lineas Complementarias 8000010. K. Mischaikow was supported in part by NSF Grant DMS 0107396. Key words or phases:Non-local dispersal – Integral kernel – Evolution of dispersal  相似文献   

17.
The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287–293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409–435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205–218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.  相似文献   

18.
With few exceptions, spatial heterogeneity in ecological models has been largely ignored until relatively recently. The current upsurge in interest is partly due to cross-fertilization with other disciplines, particularly mathematics. Models of species interaction in which the species disperse by diffusion are mathematically similar to those that arise in chemical reaction-diffusion systems which have been proposed as a basis for morphogenesis. Reaction/species interaction-diffusion systems have been increasingly studied mathematically in the last 15 years; this work has unearthed interesting new phenomena which have been proposed as explanations for many long-standing ecological problems involving spatial movement and heterogeneity of species. This is a very brief introduction to some of the basic results and how they impinge on ecology.  相似文献   

19.
Models describing the evolution of dispersal strategies have mostly focused on the evolution of dispersal rates. Taking trees as a model for organisms with undirected, passive dispersal, we have developed an individual-based, spatially explicit simulation tool to investigate the evolution of the dispersal kernel, P(r), and its resulting cumulative seed-density distribution, D(r). Simulations were run on a variety of fractal landscapes differing in the fraction of suitable habitat and the spatial autocorrelation. Starting from a uniform D(r), evolution led to an increase in the fraction of seeds staying in the home cell, a reduction of the dispersal mortality (arrival in unsuitable habitat), and the evolution of 'fat-tailed' D(r) in autocorrelated landscapes and approximately uniform D(r) in random landscapes. The evolutionary process was characterized by long periods of stasis with a few bouts of rapid change in the dispersal rate.  相似文献   

20.
KAREN J. NUTT 《Molecular ecology》2008,17(15):3541-3556
Knowledge of the dispersal status of group members is important to understanding how sociality may have evolved within a species. I assessed the effectiveness of four techniques for elucidating dispersal behaviour in a rock-dwelling rodent ( Ctenodactylus gundi ) with small group sizes (2–10 animals): genetic parentage assignment, haplotype data and kinship analyses, assignment testing, and F -statistics. The first two methods provided the greatest insight into gundi dispersal behaviour. Assignment testing and F -statistics proved of limited use for elucidating fine-scale dispersal, but could detect large-scale patterns despite low sex-biased dispersal intensity (1.9 : 1) because of moderate genetic differentiation among groups ( F ST = 0.10). Findings are discussed in light of current dispersal theory. In general, gundi dispersal is plastic, and seems to be dependent on body weight (for males), group composition, and scale of analysis (total dispersal events recorded within the population were almost twice the immigration rate into the population). Most groups were comprised of a single matriline and one immigrant male. Immigrant rather than philopatric males bred with group females. Dispersal among groups was male-biased, but dispersal or philopatry could occur by either sex. During a drought, both sexes delayed dispersal and cooperative social units formed. Whether such behaviour resulted directly from the drought or not remains unclear, however, since comparative information was not available from nondrought years. Combining fine-scale analyses with information on large-scale patterns provided substantial insight into gundi dispersal behaviour despite the limited movement of animals during a drought, and may prove useful for elucidating dispersal behaviour in other social animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号