首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   12篇
  2024年   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
2.
Fusion between the os centrale and the scaphoid has played a central role in many functional and phylogenetic interpretations of hominoid evolution. In particular, scaphoid-centrale fusion shared among African apes and humans has been interpreted as an adaptation in knuckle-walkers, an exaptation in hominins, and has been offered as evidence for a knuckle-walking origin of bipedalism. However, discrepancies in the literature concerning the taxa in which this scaphoid-centrale fusion occurs, as well as the timing and/or frequency of this fusion, have confounded the significance of this trait. This study provides an historical review of the literature on scaphoid-centrale fusion in primates and the first formal investigation into the timing and frequency of this character among primates, with a focus on extant hominoids. Results indicate that there is a significant difference in the timing and frequency of scaphoid-centrale fusion in African apes and humans compared to Asian apes, suggesting that prenatal or early postnatal fusion among hominines is a synapomorphy. Scaphoid-centrale fusion does not occur randomly within primates. Instead, only Homininae and some members of Lemuroidea show consistent and ontogenetically early fusion of these carpals. The consistent occurrence of this trait within only two primate clades and a clear heterochronic trend in timing and frequency of scaphoid-centrale fusion among hominines suggest that this character is primarily phylogenetically controlled. We could not falsify the hypothesis that scaphoid-centrale fusion in African apes is indeed related to midcarpal stability in knuckle-walking, but neither were we able to find direct biomechanical or kinematic evidence to support this hypothesis. A more definitive answer to the question of the functional significance of scaphoid-centrale fusion will have to await more detailed analyses of great ape wrist kinematics.  相似文献   
3.
For several decades, it was largely assumed that stone tool use and production were abilities limited to the genus Homo. However, growing palaeontological and archaeological evidence, comparative extant primate studies, as well as results from methodological advancements in biomechanics and morphological analyses, have been gradually accumulating and now provide strong support for more advanced manual manipulative abilities and tool-related behaviours in pre-Homo hominins than has been traditionally recognized. Here, I review the fossil evidence related to early hominin dexterity, including the recent discoveries of relatively complete early hominin hand skeletons, and new methodologies that are providing a more holistic interpretation of hand function, and insight into how our early ancestors may have balanced the functional requirements of both arboreal locomotion and tool-related behaviours.  相似文献   
4.
5.
6.

Objectives

Several studies have investigated potential functional signals in the trabecular structure of the primate proximal humerus but with varied success. Here, we apply for the first time a “whole‐epiphyses” approach to analysing trabecular bone in the humeral head with the aim of providing a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors in several extant primates and Australopithecus africanus.

Materials and methods

We use a “whole‐epiphysis” methodology in comparison to the traditional volume of interest (VOI) approach to investigate variation in trabecular structure and joint loading in the proximal humerus of extant hominoids, Ateles and A. africanus (StW 328).

Results

There are important differences in the quantification of trabecular parameters using a “whole‐epiphysis” versus a VOI‐based approach. Variation in trabecular structure across knuckle‐walking African apes, suspensory taxa, and modern humans was generally consistent with predictions of load magnitude and inferred joint posture during habitual behaviors. Higher relative trabecular bone volume and more isotropic trabeculae in StW 328 suggest A. africanus may have still used its forelimbs for arboreal locomotion.

Discussion

A whole‐epiphysis approach to analysing trabecular structure of the proximal humerus can help distinguish functional signals of joint loading across extant primates and can provide novel insight into habitual behaviors of fossil hominins.
  相似文献   
7.
Bone form reflects both the genetic profile and behavioural history of an individual. As cortical bone is able to remodel in response to mechanical stimuli, interspecific differences in cortical bone thickness may relate to loading during locomotion or manual behaviours during object manipulation. Here, we test the application of a novel method of cortical bone mapping to the third metacarpal (Mc3) and talus of Pan, Pongo, and Homo. This method of analysis allows measurement of cortical thickness throughout the bone, and as such is applicable to elements with complex morphology. In addition, it allows for registration of each specimen to a canonical surface, and identifies regions where cortical thickness differs significantly between groups. Cortical bone mapping has potential for application to palaeoanthropological studies; however, due to the complexity of correctly registering homologous regions across varied morphology, further methodological development would be advantageous.  相似文献   
8.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   
9.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号