首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In 2004, a new hominin species, Homo floresiensis, was described from Late Pleistocene cave deposits at Liang Bua, Flores. H. floresiensis was remarkable for its small body-size, endocranial volume in the chimpanzee range, limb proportions and skeletal robusticity similar to Pliocene Australopithecus, and a skeletal morphology with a distinctive combination of symplesiomorphic, derived, and unique traits. Critics of H. floresiensis as a novel species have argued that the Pleistocene skeletons from Liang Bua either fall within the range of living Australomelanesians, exhibit the attributes of growth disorders found in modern humans, or a combination of both. Here we describe the morphology of the LB1, LB2, and LB6 mandibles and mandibular teeth from Liang Bua. Morphological and metrical comparisons of the mandibles demonstrate that they share a distinctive suite of traits that place them outside both the H. sapiens and H. erectus ranges of variation. While having the derived molar size of later Homo, the symphyseal, corpus, ramus, and premolar morphologies share similarities with both Australopithecus and early Homo. When the mandibles are considered with the existing evidence for cranial and postcranial anatomy, limb proportions, and the functional anatomy of the wrist and shoulder, they are in many respects closer to African early Homo or Australopithecus than to later Homo. Taken together, this evidence suggests that the ancestors of H. floresiensis left Africa before the evolution of H. erectus, as defined by the Dmanisi and East African evidence.  相似文献   

2.
Discovery of the first complete Early Pleistocene hominin pelvis, Gona BSN49/P27, attributed to Homo erectus, raises a number of issues regarding early hominin body size and shape variation. Here, acetabular breadth, femoral head breadth, and body mass calculated from femoral head breadth are compared in 37 early hominin (6.0-0.26 Ma) specimens, including BSN49/P27. Acetabular and estimated femoral head sizes in the Gona specimen fall close to the means for non-Homo specimens (Orrorin tugenesis, Australopithecus africanus, Paranthropus robustus), and well below the ranges of all previously described Early and Middle Pleistocene Homo specimens. The Gona specimen has an estimated body mass of 33.2 kg, close to the mean for the non-Homo sample (34.1 kg, range 24-51.5 kg, n = 19) and far outside the range for any previously known Homo specimen (mean = 70.5 kg; range 52-82 kg, n = 17). Inclusion of the Gona specimen within H. erectus increases inferred sexual dimorphism in body mass in this taxon to a level greater than that observed here for any other hominin taxon, and increases variation in body mass within H. erectus females to a level much greater than that observed for any living primate species. This raises questions regarding the taxonomic attribution of the Gona specimen. When considered within the context of overall variation in body breadth among early hominins, the mediolaterally very wide Gona pelvis fits within the distribution of other lower latitude Early and Middle Pleistocene specimens, and below that of higher latitude specimens. Thus, ecogeographic variation in body breadth was present among earlier hominins as it is in living humans. The increased M-L pelvic breadth in all earlier hominins relative to modern humans is related to an increase in ellipticity of the birth canal, possibly as a result of a non-rotational birth mechanism that was common to both australopithecines and archaic Homo.  相似文献   

3.
4.
5.
Excavations at Liang Bua, on the Indonesian island of Flores, have yielded a stratified sequence of stone artifacts and faunal remains spanning the last 95 k.yr., which includes the skeletal remains of two human species, Homo sapiens in the Holocene and Homo floresiensis in the Pleistocene. This paper summarizes and focuses on some of the evidence for Homo floresiensis in context, as presented in this Special Issue edition of the Journal of Human Evolution and elsewhere. Attempts to dismiss the Pleistocene hominins (and the type specimen LB1 in particular) as pathological pygmy humans are not compatible with detailed analyses of the skull, teeth, brain endocast, and postcranium. We initially concluded that H. floresiensis may have evolved by insular dwarfing of a larger-bodied hominin species over 880 k.yr. or more. However, recovery of additional specimens and the numerous primitive morphological traits seen throughout the skeleton suggest instead that it is more likely to be a late representative of a small-bodied lineage that exited Africa before the emergence of Homo erectus sensu lato. Homo floresiensis is clearly not an australopithecine, but does retain many aspects of anatomy (and perhaps behavior) that are probably plesiomorphic for the genus Homo. We also discuss some of the other implications of this tiny, endemic species for early hominin dispersal and evolution (e.g., for the “Out of Africa 1” paradigm and more specifically for colonizing Southeast Asia), and we present options for future research in the region.  相似文献   

6.
Neandertals and their immediate predecessors are commonly considered to be the only humans inhabiting Europe in the Middle and early Late Pleistocene. Most Middle Pleistocene western European specimens show evidence of a developing Neandertal morphology, supporting the notion that these traits evolved at the extreme West of the continent due, at least partially, to the isolation produced by glacial events. The recent discovery of a mandible, BH-1, from Mala Balanica (Serbia), with primitive character states comparable with Early Pleistocene mandibular specimens, is associated with a minimum radiometric date of 113 + 72 − 43 ka. Given the fragmented nature of the hemi-mandible and the fact that primitive character states preclude assignment to a species, the taxonomic status of the specimen is best described as an archaic Homo sp. The combination of primitive traits and a possible Late Pleistocene date suggests that a more primitive morphology, one that does not show Neandertal traits, could have persisted in the region. Different hominin morphologies could have survived and coexisted in the Balkans, the “hotspot of biodiversity.” This first hominin specimen to come from a secure stratigraphic context in the Central Balkans indicates a potentially important role for the region in understanding human evolution in Europe that will only be resolved with more concentrated research efforts in the area.  相似文献   

7.
In many animals, behaviours such as territoriality, mate guarding, navigation and food acquisition rely heavily on spatial memory abilities; this has been demonstrated in diverse taxa, from invertebrates to mammals. However, spatial memory ability in squamate reptiles has been seen as possible, at best, or non-existent, at worst. Of the few previous studies testing for spatial memory in squamates, some have found no evidence of spatial memory while two studies have found evidence of spatial memory in snakes, but have been criticized based on methodological issues. We used the Barnes maze, a common paradigm to test spatial memory abilities in mammals, to test for spatial memory abilities in the side-blotched lizard (Uta stansburiana). We found the existence of spatial memory in this species using this spatial task. Thus, our study supports the existence of spatial memory in this squamate reptile species and seeks to parsimoniously align this species with the diverse taxa that demonstrate spatial memory ability.  相似文献   

8.
Carbon and oxygen stable isotopes within modern and fossil tooth enamel record the aspects of an animal''s diet and habitat use. This investigation reports the first isotopic analyses of enamel from a large chimpanzee community and associated fauna, thus providing a means of comparing fossil ape and early hominin palaeoecologies with those of a modern ape. Within Kibale National Park forest, oxygen isotopes differentiate primate niches, allowing for the first isotopic reconstructions of degree of frugivory versus folivory as well as use of arboreal versus terrestrial resources. In a comparison of modern and fossil community isotopic profiles, results indicate that Sivapithecus, a Miocene ape from Pakistan, fed in the forest canopy, as do chimpanzees, but inhabited a forest with less continuous canopy or fed more on leaves. Ardipithecus, an early hominin from Ethiopia, fed both arboreally and terrestrially in a more open habitat than inhabited by chimpanzees.  相似文献   

9.
Recent humans and their fossil relatives are classified as having thick molar enamel, one of very few dental traits that distinguish hominins from living African apes. However, little is known about enamel thickness in the earliest members of the genus Homo, and recent studies of later Homo report considerable intra- and inter-specific variation. In order to assess taxonomic, geographic, and temporal trends in enamel thickness, we applied micro-computed tomographic imaging to 150 fossil Homo teeth spanning two million years. Early Homo postcanine teeth from Africa and Asia show highly variable average and relative enamel thickness (AET and RET) values. Three molars from South Africa exceed Homo AET and RET ranges, resembling the hyper thick Paranthropus condition. Most later Homo groups (archaic European and north African Homo, and fossil and recent Homo sapiens) possess absolutely and relatively thick enamel across the entire dentition. In contrast, Neanderthals show relatively thin enamel in their incisors, canines, premolars, and molars, although incisor AET values are similar to H. sapiens. Comparisons of recent and fossil H. sapiens reveal that dental size reduction has led to a disproportionate decrease in coronal dentine compared with enamel (although both are reduced), leading to relatively thicker enamel in recent humans. General characterizations of hominins as having ‘thick enamel’ thus oversimplify a surprisingly variable craniodental trait with limited taxonomic utility within a genus. Moreover, estimates of dental attrition rates employed in paleodemographic reconstruction may be biased when this variation is not considered. Additional research is necessary to reconstruct hominin dietary ecology since thick enamel is not a prerequisite for hard-object feeding, and it is present in most later Homo species despite advances in technology and food processing.  相似文献   

10.

Background

Major biological and cultural innovations in late Pliocene hominin evolution are frequently linked to the spread or fluctuating presence of C4 grass in African ecosystems. Whereas the deep sea record of global climatic change provides indirect evidence for an increase in C4 vegetation with a shift towards a cooler, drier and more variable global climatic regime beginning approximately 3 million years ago (Ma), evidence for grassland-dominated ecosystems in continental Africa and hominin activities within such ecosystems have been lacking.

Methodology/Principal Findings

We report stable isotopic analyses of pedogenic carbonates and ungulate enamel, as well as faunal data from ∼2.0 Ma archeological occurrences at Kanjera South, Kenya. These document repeated hominin activities within a grassland-dominated ecosystem.

Conclusions/Significance

These data demonstrate what hitherto had been speculated based on indirect evidence: that grassland-dominated ecosystems did in fact exist during the Plio-Pleistocene, and that early Homo was active in open settings. Comparison with other Oldowan occurrences indicates that by 2.0 Ma hominins, almost certainly of the genus Homo, used a broad spectrum of habitats in East Africa, from open grassland to riparian forest. This strongly contrasts with the habitat usage of Australopithecus, and may signal an important shift in hominin landscape usage.  相似文献   

11.
Sterkfontein Caves is the single richest early hominin site in the world with deposits yielding one or more species of Australopithecus and possible early Homo, as well as an extensive faunal collection. The inability to date the southern African cave sites accurately or precisely has hindered attempts to integrate the hominin fossil evidence into pan-African scenarios about human evolutionary history, and especially hominin biogeography. We have used U-Pb and U-Th techniques to date sheets of calcium carbonate flowstone inter-bedded between the fossiliferous sediments. For the first time, absolute age ranges can be assigned to the fossil-bearing deposits: Member 2 is between 2.8 ± 0.28 and 2.6 ± 0.30 Ma and Member 4 between 2.65 ± 0.30 and 2.01 ± 0.05 Ma. The age of 2.01 ± 0.05 Ma for the top of Member 4 constrains the last appearance of Australopithecus africanus to 2 Ma. In the Silberberg Grotto we have reproduced the U-Pb age of ∼2.2 Ma of for the flowstones associated with StW573. We believe that these deposits, including the fossil and the flowstones, accumulated rapidly around 2.2 Ma. The stratigraphy of the site is complex as sediments are exposed both in the underground chambers and at surface. We present a new interpretation of the stratigraphy based on surface mapping, boreholes logs and U-Pb ages. Every effort was made to retain the Member system, however, only Members 2 and 4 are recognized in the boreholes. We propose that the deposits formally known as Member 3 are in fact the distal equivalents of Member 4. The sediments of Members 2 and 4 consisted of cone-like deposits and probably never filled up the cave. The U-Th ages show that there are substantial deposits younger than 400 ka in the underground cave, underlying the older deposits, highlighting again that these cave fills are not simple layer-cakes.  相似文献   

12.
The announcement of a new species, Homo floresiensis, a primitive hominin that survived until relatively recent times is an enormous challenge to paradigms of human evolution. Until this announcement, the dominant paradigm stipulated that: 1) only more derived hominins had emerged from Africa, and 2) H. sapiens was the only hominin since the demise of Homo erectus and Homo neanderthalensis. Resistance to H. floresiensis has been intense, and debate centers on two sets of competing hypotheses: 1) that it is a primitive hominin, and 2) that it is a modern human, either a pygmoid form or a pathological individual. Despite a range of analytical techniques having been applied to the question, no resolution has been reached. Here, we use cladistic analysis, a tool that has not, until now, been applied to the problem, to establish the phylogenetic position of the species. Our results produce two equally parsimonious phylogenetic trees. The first suggests that H. floresiensis is an early hominin that emerged after Homo rudolfensis (1.86 Ma) but before H. habilis (1.66 Ma, or after 1.9 Ma if the earlier chronology for H. habilis is retained). The second tree indicates H. floresiensis branched after Homo habilis.  相似文献   

13.
Animals in captive or laboratory settings may outperform wild animals of the same species in both frequency and diversity of tool use, a phenomenon here termed ‘captivity bias’. Although speculative at this stage, a logical conclusion from this concept is that animals whose tool-use behaviour is observed solely under natural conditions may be judged cognitively or physically inferior than if they had also been tested or observed under controlled captive conditions. In turn, this situation creates a potential problem for studies of the behaviour of extinct members of the human family tree—the hominins—as hominin cognitive abilities are often judged on material evidence of tool-use behaviour left in the archaeological record. In this review, potential factors contributing to captivity bias in primates (including increased contact between individuals engaged in tool use, guidance or shaping of tool-use behaviour by other tool-users and increased free time and energy) are identified and assessed for their possible effects on the behaviour of the Late Pleistocene hominin Homo floresiensis. The captivity bias concept provides one way to uncouple hominin tool use from cognition, by considering hominins as subject to the same adaptive influences as other tool-using animals.  相似文献   

14.
The proximal femur has long been used to distinguish fossil hominin taxa. Specifically, the genus Homo is said to be characterized by larger femoral heads, shorter femoral necks, and more lateral flare of the greater trochanter than are members of the genera Australopithecus or Paranthropus. Here, a digitizing arm was used to collect landmark data on recent human (n=82), chimpanzee (n=16), and gorilla (n=20) femora and casts of six fossil hominin femora in order to test whether one can discriminate extant and fossil hominid (sensu lato) femora into different taxa using three-dimensional (3D) geometric morphometric analyses. Twenty proximal femoral landmarks were chosen to best quantify the shape differences between hominin genera. These data were first subjected to Procrustes analysis. The resultant fitted coordinate values were then subjected to PCA. PC scores were used to compute a dissimilarity matrix that was subjected to cluster analyses. Results indicate that one can easily distinguish Homo, Pan, and Gorilla from each other based on proximal femur shape, and one can distinguish Pliocene and Early Pleistocene hominin femora from those of recent Homo. It is more difficult to distinguish Early Pleistocene Homo proximal femora from those of Australopithecus or Paranthropus, but cluster analyses appear to separate the fossil hominins into four groups: an early australopith cluster that is an outlier from other fossil hominins; and two clusters that are sister taxa to each other: a late australopith/Paranthropus group and an early Homo group.  相似文献   

15.
Over the past 75 years since the discovery of the first australopithecine at Taung in southern Africa there has been a growing realisation that there is no simple, linear ancestor-descendant relationship connecting the australopithecines to laterHomo. There are currently at least ten recognised species of australopithecine, including two species of earlyHomo, that have been recently transferred to the genusAustralopithecus. These known species span the period between about 4.2-1.2 Ma and throughout the majority of this period there are multiple contemporaneous hominin species in eastern and southern Africa. This contribution reviews current knowledge about the australopithecine species and their inferred relationships to each other and to the genusHomo. At present it is impossible to resolve the phylogenetic relationships of the australopithecines with any degree of confidence. There is a growing realisation of the ‘bushy’ nature of hominin evolution throughout the australopithecine period and also of the inevitability that additional early hominin species remain to be discovered. Paper submitted for inclusion in the Proceedings of the International Symposium of the Ramón Areces Foundation “Evolution of the Human Family: State of the Art” held in Madrid on the 11–13 March, 1998  相似文献   

16.
Bivariate femoral length allometry in recent humans, Pan, and Gorilla is investigated with special reference to the diminutive Liang Bua (LB) 1 specimen (the holotype of Homo floresiensis) and six early Pleistocene femora referred to the genus Homo. Relative to predicted body mass, Pan and Gorilla femora show strong negative length allometry while recent human femora evince isometry to positive allometry, depending on sample composition and line-fitting technique employed. The allometric trajectories of Pan and Homo show convergence near the small body size range of LB 1, such that LB 1 manifests a low percentage deviation (dyx of Smith [1980]) from the Pan allometric trajectory and falls well within the 95% confidence limits around the Pan individuals (but also outside the 95% confidence limits for recent Homo). In contrast, the six early Pleistocene Homo femora, belonging to larger individuals, show much greater dyx values from both Pan and Gorilla and fall well above the 95% confidence limits for these taxa. All but one of these Pleistocene Homo specimens falls within the 95% confidence limits of the recent human sample. Similar results are obtained when femoral length is regressed on femoral head diameter in unlogged bivariate space. Regardless of the ultimate taxonomic status of LB 1, these findings are consistent with a prediction made by us (Franciscus and Holliday, 1992) that hominins in the small body size range of A.L. 288-1 (“Lucy”), including members of the genus Homo, will tend to possess short, ape-like lower limbs as a function of body size scaling.  相似文献   

17.
Gary Clark  Maciej Henneberg 《HOMO》2017,68(2):101-121
In this paper we analyse the possibility that the early hominin Ardipithecus ramidus had vocal capabilities far exceeding those of any extant non-human primate. We argue that erect posture combined with changes in craniofacial morphology, such as reduced facial and jaw length, not only provide evidence for increased levels of pro-sociality, but also increased vocal ability. Reduced length of the face and jaw, combined with a flexed cranial base, suggests the larynx in this species was situated deeper in the neck than in chimpanzees, a trait which may have facilitated increased vocal ability. We also provide evidence that Ar. ramidus, by virtue of its erect posture, possessed a degree of cervical lordosis significantly greater than chimpanzees. This is indicative of increased mobility of the larynx within the neck and hence increased capacity to modulate vocalisations. In the paleoanthropological literature, these changes in early hominin skull morphology have to date been analysed in terms of a shift in mating and social behaviour, with little consideration given to vocally mediated sociality. Similarly, in the literature on language evolution there is a distinct lacuna regarding links between craniofacial correlates of social and mating systems and vocal ability. These are surprising oversights given that pro-sociality and vocal capability require identical alterations to the common ancestral skull and skeletal configuration. We therefore propose a model which integrates data on whole organism morphogenesis with evidence for a potential early emergence of hominin socio-vocal adaptations. Consequently, we suggest vocal capability may have evolved much earlier than has been traditionally proposed. Instead of emerging in the Homo genus, we suggest the palaeoecological context of late Miocene and early Pliocene forests and woodlands facilitated the evolution of hominin socio-vocal capability. We also propose that paedomorphic morphogenesis of the skull via the process of self-domestication enabled increased levels of pro-social behaviour, as well as increased capacity for socially synchronous vocalisation to evolve at the base of the hominin clade.  相似文献   

18.
We present a detailed morphological comparative study of the hominin mandible ATE9-1 recovered in 2007 from the Sima del Elefante cave site in Sierra de Atapuerca, Burgos, northern Spain. Paleomagnetic analyses, biostratigraphical studies, and quantitative data obtained through nuclide cosmogenic methods, place this specimen in the Early Pleistocene (1.2-1.3 Ma). This finding, together with archaeological evidence from different European sites, suggests that Western Europe was colonised shortly after the first hominin expansion out of Africa around the Olduvai subchron. Our analysis of the ATE9-1 mandible includes a geometric morphometric analysis of the lower second premolar (LP4), a combined and detailed external and internal assessment of ATE9-1 roots through CT and microCT techniques, as well as a comparative study of mandibular and other dental features. This analysis reveals some primitive Homo traits on the external aspect of the symphysis and the dentition shared with early African Homo and the Dmanisi hominins. In contrast, other mandibular traits on the internal aspect of the symphysis are derived with regard to African early Homo, indicating unexpectedly large departures from patterns observed in Africa. Reaching the most occidental part of the Eurasian continent implies that the first African emigrants had to cross narrow corridors and to overcome geographic barriers favouring genetic drift, long isolation periods, and adaptation to new climatic and seasonal conditions. Given these conditions and that we are dealing with a long time period, it is possible that one or more speciation events could have occurred in this extreme part of Eurasia during the Early Pleistocene, originating in the lineages represented by the Sima del Elefante-TE9 hominins and possibly by the Gran Dolina-TD6 hominins. In the absence of any additional evidence, we prefer not include the specimen ATE9-1 in any named taxon and refer to it as Homo sp.  相似文献   

19.
Despite uncontested evidence for fossils belonging to the early hominin genus Australopithecus in East Africa from at least 4.2 million years ago (Ma), and from Chad by 3.5 Ma, thus far there has been no convincing evidence of Australopithecus, Paranthropus or early Homo from the western (Albertine) branch of the Rift Valley. Here we report the discovery of an isolated upper molar (#Ish25) from the Western Rift Valley site of Ishango in Central Africa in a derived context, overlying beds dated to between ca. 2.6 to 2.0 Ma. We used µCT imaging to compare its external and internal macro-morphology to upper molars of australopiths, and fossil and recent Homo. We show that the size and shape of the enamel-dentine junction (EDJ) surface discriminate between Plio-Pleistocene and post-Lower Pleistocene hominins, and that the Ishango molar clusters with australopiths and early Homo from East and southern Africa. A reassessment of the archaeological context of the specimen is consistent with the morphological evidence and suggest that early hominins were occupying this region by at least 2 Ma.  相似文献   

20.
The phylogenetic relationships of several hominin species remain controversial. Two methodological issues contribute to the uncertainty—use of partial, inconsistent datasets and reliance on phylogenetic methods that are ill-suited to testing competing hypotheses. Here, we report a study designed to overcome these issues. We first compiled a supermatrix of craniodental characters for all widely accepted hominin species. We then took advantage of recently developed Bayesian methods for building trees of serially sampled tips to test among hypotheses that have been put forward in three of the most important current debates in hominin phylogenetics—the relationship between Australopithecus sediba and Homo, the taxonomic status of the Dmanisi hominins, and the place of the so-called hobbit fossils from Flores, Indonesia, in the hominin tree. Based on our results, several published hypotheses can be statistically rejected. For example, the data do not support the claim that Dmanisi hominins and all other early Homo specimens represent a single species, nor that the hobbit fossils are the remains of small-bodied modern humans, one of whom had Down syndrome. More broadly, our study provides a new baseline dataset for future work on hominin phylogeny and illustrates the promise of Bayesian approaches for understanding hominin phylogenetic relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号