首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   11篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1975年   4篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1968年   3篇
  1961年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
2.
3.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
4.
Conformational changes have been studied in (Na,K) ATPase labeled at or near the ATP binding region with fluorescein following incubation with fluorescein isothiocyanate (FITC). One or two fluorescein groups are bound per ATPase molecule. (Na,K) ATPase activity, phosphorylation from ATP, and nucleotide binding are abolished in labeled enzyme, but phosphorylation from inorganic phosphate or K-phosphatase activity are only partially inactivated. The fluorescein groups are incorporated only into the 96 KD catalytic chain of the (Na,K) ATPase, and presence of ATP during the incubation with FITC protects against the incorporation and inhibition of enzymic activity. Upon trypsin treatment of labeled membranes the fluorescein appears first in a 58 KD fragment and eventually is released into the medium. The fluorescein-labeled (Na,K) ATPase shows a large quenching of fluorescence (15–20%) on conversion of the E1 or E1 · Na conformation in cation-free or Na+-rich media to the E2 · (K) form in K+ (or congeners Tl+, Rb+, Cs+, NH 4 + ) rich media. Cation titrations suggest that K+ and Na+ ions compete at a single binding site and stabilize E1 · Na or E2 · (K) respectively;K K0.23 mM,K Na1.2 mM. The rate of the conformational transition E2 · (K) E1 · Na is slow,k=0.3 sec–1, but contrary to previous experience [7, 8] ATP does not stimulate this rate. The rate of the transitions E1 + K+ E2 · (K) rises sharply with K+ concentration and shows saturation behavior, from which ak max286 sec–1 andK k74 mM are deduced. The data support and extend the previous suggestion that K+ ions bound initially at a low-affinity (probably cytoplasm oriented) site in state E1 are trapped in the occluded form E2 · (K) by the conformational change poised far (K c1000) in the direction of E2 · (K). It is proposed in addition that at least two binding sites for K+ exist at the cytoplasmic surface of isolated (Na,K) ATPase in state E1 but a large difference in affinities precludes detection in fluorescence titrations of more than one site. A variety of ligands in addition to K+ produce fluorescence-quenched or E2 forms of the labeled (Na,K) ATPase. These include Mg2+ plus inorganic phosphate, without or with K+ ions (E2P or E2P · K) or with ouabain (E2-ouabain or E2P · ouabain). Na+ ions antagonize these effects. The collected data support the notion that there may be many subspecies of the E1 and E2 forms (either phosphorylated or nonphosphorylated) with different numbers of Na+ and/or K+ ions bound or occluded, each subspecies having a characteristic ability to catalyze reactions and/or transport cations. The relationship between the conformational changes in fluorescein-labeled enzyme and the subunit structure of the (Na,K) ATPase is discussed with particular reference to half of the site models for ATP hydrolysis.  相似文献   
5.
1. Formycin triphosphate (FTP), a fluorescent analogue of ATP, is a substrate for (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3), with properties similar to those of ATP. 2. FTP and formycin diphosphate (FDP) bind to the enzyme with high affinity and, on binding, the nucleotide fluorescence is enhanced 3-4-fold. It is therefore possible, with a stopped-flow fluorimeter, to measure the rates of binding and release of FTP and FDP under conditions in which turnover does not occur. 3. When the enzyme-FTP complex is exposed to conditions permitting turnover (Mg2+, Na+ +/- K+), changes in fluorescence occur which can be explained by supposing that they reflect the interconversion of states with or without bound nucleotides. A rapid fall in fluorescence, that we attribute to the rapid release of FDP from newly phosphorylated enzyme, is followed by a steady state in which low fluorescence suggests that little nucleotide is bound. Eventually, exhaustion of FTP allows rebinding of FDP to the enzyme, which is signalled by a rise in fluorescence. 4. The estimated rate of FDP release from newly formed phosphoenzyme is unaffected by the presence of K+ (0-2 mM) or the concentration of FTP (1-20 micron). 5. Experiments with [gamma-32P]FTP show that about 1 mol of 32P is incorporated per mol of enzyme. The rate of phosphorylation of the enzyme by [gamma-32P]FTP has been measured with a rapid-mixing-and-quenching apparatus. 6. Kinetic data from the fluorescence and phosphorylation experiments show that the behaviour of the enzyme, at least at the low nucleotide concentrations employed, is consistent with the Albers-Post model, and is difficult to reconcile with models in which K+ acts at or before the step in which FDP is released during turnover.  相似文献   
6.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
7.
The human α1/His101 isoform of Na,K-ATPase has been reconstituted as a complex with and without FXYD1 into proteoliposomes of various lipid compositions in order to study the effect of the regulatory subunit on the half-saturating Na+ concentration (K 1/2) of Na+ ions for activation of the ion pump. It has been shown that the fraction of negatively charged lipid in the bilayer crucially affects the regulatory properties. At low concentrations of the negatively charged lipid DOPS (<10 %), FXYD1 increases K 1/2 of Na+ ions for activation of the ion pump. Phosphorylation of FXYD1 by protein kinase A at Ser68 abrogates this effect. Conversely, for proteoliposomes made with high concentrations of DOPS (>10 %), little or no effect of FXYD1 on the K 1/2 of Na+ ions is observed. Depending on ionic strength and lipid composition of the proteoliposomes, FXYD1 can alter the K 1/2 of Na+ ions by up to twofold. We propose possible molecular mechanisms to explain the regulatory effects of FXYD1 and the influence of charged lipid and protein phosphorylation. In particular, the positively charged C-terminal helix of FXYD1 appears to be highly mobile and may interact with the cytoplasmic N domain of the α-subunit, the interaction being strongly affected by phosphorylation at Ser68 and the surface charge of the membrane.  相似文献   
8.
The gamma subunit of the Na,K-ATPase is a member of the FXYD family of type 2 transmembrane proteins that probably function as regulators of ion transport. Rat gamma is present primarily in the kidney as two main splice variants, gamma(a) and gamma(b), which differ only at their extracellular N termini (TELSANH and MDRWYL, respectively; Kuster, B., Shainskaya, A., Pu, H. X., Goldshleger, R., Blostein, R., Mann, M., and Karlish, S. J. D. (2000) J. Biol. Chem. 275, 18441-18446). Expression in cultured cells indicates that both variants affect catalytic properties, without a detectable difference between gamma(a) and gamma(b). At least two singular effects are seen, irrespective of whether the variants are expressed in HeLa or rat alpha1-transfected HeLa cells, i.e. (i) an increase in apparent affinity for ATP, probably secondary to a left shift in E(1) <--> E(2) conformational equilibrium and (ii) an increase in K(+) antagonism of cytoplasmic Na(+) activation. Antibodies against the C terminus common to both variants (anti-gamma) abrogate the first effect but not the second. In contrast, gamma(a) and gamma(b) show differences in their localization along the kidney tubule. Using anti-gamma (C-terminal) and antibodies to the rat alpha subunit as well as antibodies to identify cell types, double immunofluorescence showed gamma in the basolateral membrane of several tubular segments. Highest expression is in the medullary portion of the thick ascending limb (TAL), which contains both gamma(a) and gamma(b). In fact, TAL is the only positive tubular segment in the medulla. In the cortex, most tubules express gamma but at lower levels. Antibodies specific for gamma(a) and gamma(b) showed differences in their cortical location; gamma(a) is specific for cells in the macula densa and principal cells of the cortical collecting duct but not cortical TAL. In contrast, gamma(b) but not gamma(a) is present in the cortical TAL only. Thus, the importance of gamma(a) and gamma(b) may be related to their partially overlapping but distinct expression patterns and tissue-specific functions of the pump that these serve.  相似文献   
9.
Tal DM  Capasso JM  Munson K  Karlish SJ 《Biochemistry》2001,40(42):12505-12514
This paper describes a novel approach to specific oxidative cleavage of Na(+),K(+)-ATPase, mediated by Cu(2+) ions and a hydrophobic phenanthroline, 4,7-diphenyl-1,10-phenanthroline (DPP), in the presence of ascorbate and H(2)O(2). The cleavage produces two major fragments of the alpha subunit, with apparent molecular masses of 96.5 and 76 kDa, and N-termini near the cytoplasmic entrance of transmembrane segments M1 and M3, respectively, The kinetics indicate that both cleavages are mediated by a single Cu(2+)-DPP complex. We infer that M3 and M1 are in proximity near the cytoplasmic surface. The yields of 96.5 and 76 kDa fragments are not significantly affected by ligands that stabilize different E(1) and E(2) conformations. In E(2)(K) and E(2)P conformations, a minor 5.5 kDa fragment with its N-terminus in M10 is also observed. The 96.5 and 76 kDa fragments are indistinguishable from two fragments near M3 and M1 produced by Fe(2+)-catalyzed cleavage described previously [Goldshleger, R., and Karlish, S. J. D. (1999) J. Biol. Chem. 274, 16213-16221], whereas other Fe(2+)-catalyzed cleavage fragments in the cytoplasmic P and A domains are not observed with the Cu(2+)-DPP complex. These findings provide experimental support for the concept of two separate Fe(2+) sites. A homology model, with Na(+),K(+)-ATPase residues within transmembrane segments and connecting loops substituted into the crystal structure of Ca(2+)-ATPase, shows the proximity between the sequences HFIH in M3 and EVWK in M1, near the cytoplasmic surface. Thus, the model strongly supports the conclusions based on cleavages mediated by the Cu(2+)-DPP complex (or Fe(2+) at site 2). As a corollary, the cleavages provide evidence for similar packing of M1 and M3 of Na(+),K(+)-ATPase and Ca(2+)-ATPase.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号