首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.
Zeng  Weimin  Li  Fang  Wu  Chenchen  Yu  Runlan  Wu  Xueling  Shen  Li  Liu  Yuandong  Qiu  Guanzhou  Li  Jiaokun 《Bioprocess and biosystems engineering》2020,43(1):153-167

Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation–emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM–EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.

  相似文献   
2.
Psidium guajava leaves are rich in health-promoting flavonoids compounds. For better utilization of the resource, the ultrasound-assisted aqueous extraction was investigated using Box-Behnken design under response surface methodology. A high coefficient of determination (R2?=?97.8%) indicated good agreement between the experimental and predicted values of flavonoids yield. The optimal extraction parameters to obtain the highest total flavonoids yield were ultrasonic power of 407.41?W, extraction time of 35.15?min, and extraction temperature of 72.69?°C. The average extraction rate of flavonoids could reach 5.12% under the optimum conditions. Besides, HPLC analysis and field emission scanning electron microscopy indicated that the ultrasonic treatment did not change the main component of flavonoids during extraction process and the higher flavonoids content was attributed by the disruption of the cell walls of guava particles. Thus, the extraction method could be applied successfully for large-scale extraction of total flavonoids from guava leaves.  相似文献   
3.
花对称性的研究进展   总被引:1,自引:0,他引:1  
花对称性(floral symmetry)是被子植物花部结构的典型特性之一,主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称,而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新,被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段,随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明,在传粉过程的不同阶段,花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花,两侧对称的花提高了特异性传粉者的选择作用,增加了花粉落置的精确性,进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明,CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源,与其他花部构成之间是否协同作用,一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。  相似文献   
4.
Antimony (Sb)-oxidizing bacteria play an important role in environmental Sb bioremediation because of their ability to convert the more toxic Sb(III) to the less toxic Sb(V). So far, the information about the Sb(III)-oxidizing bacteria species is still limited. In this study, three highly Sb(III)-resistant bacterial strains were isolated from contaminated mine soils after aerobic enrichment culturing with Sb(III) (1 mM). The morphological, biochemical, and 16S rRNA gene sequencing analysis suggested that the three novel bacterial isolates fell within Cupriavidus, Moraxella, and Bacillus, respectively. Among the strains, Moraxella sp. S2 isolated from soils with the highest Sb content exhibited the highest minimum inhibitory concentration for Sb(III) but the lowest Sb(III) oxidation efficiency, which could not completely oxidize 50 μM Sb(III) in 15 days. Cupriavidus sp. S1 was able to oxidize 50 μM Sb(III) completely in 12 days, but could not oxidize 100 μM Sb(III) even with extended time of incubation, while Bacillus sp. S3 with the lowest resistance to Sb(III) could aerobically oxidize 100 µM Sb(III) within 2 days, showing high Sb(III) oxidation efficiency. Our research demonstrated that indigenous microorganisms associated with Sb mine soils were capable of Sb oxidation, and the novel bacteria isolated could represent good candidates for Sb remediation in heavily polluted sites.  相似文献   
5.
Two molecular chaperone genes encoding the Acidithiobacillus ferrooxidans Hsp60 (AtGroEL) and Hsp10 (AtGroES), respectively were introduced into Escherichia coli using the pLM1 expression vector. Then the AtGroEL and AtGroES proteins were overexpressed successfully in Escherichia coli BL21 (DE3), and purified by one-step immobilized metal affinity chromatography. The ATPase assay showed that the proteins were in active form, and the ATPase activity of AtGroEL was temperature dependent with an optimal temperature of 50°C, but the co-chaperonin AtGroES inhibited the ATPase activity of AtGroEL. The chaperonin function of the recombinant proteins was examined using three different protein substrates in vitro, and the results showed that AtGroEL/AtGroES chaperone system could facilitate the refolding of the thermodenatured rusticyanin and recover the activity of thermodenatured ArsH protein. In addition, it could improve the thermal stability of xylanase. Molecular modelling for AtGroEL protein revealed that residues of Tyr199, Ser201, Tyr203, Phe204, Leu234, Leu237, Leu259, Val263 and Val264 were necessary for binding the denatured polypeptides.  相似文献   
6.
经典的ABC模型成功地解释了模式植物拟南芥和金鱼草因同源异型基因突变而引起的植物花器官的变异。随后,大量花器官特征基因和新突变体的研究不断完善和发展了ABC模型。该文综述了近年来花器官发育分子模型及花器官同源基因的调控机理等方面的最新研究成果,并对未来的研究方向进行了展望,以期为深入了解花发育的分子机理和遗传机制奠定基础。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号