首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于模式植物拟南芥(Arabidopsis thaliana)和金鱼草(Antirrhinum majus)花器官突变体研究提出的四聚体模型揭示了花同源异型蛋白的相互作用方式;进一步提出的核小体拟态模型,解释了花同源蛋白四聚体调控目标靶基因的分子机理。被子植物花器官形态多样化与MADS-box基因的表达模式和功能分化密切相关。多年生被子植物花发育的高通量转录组分析表明,多种基因参与调控花器官发育过程。本文重点综述了被子植物花器官发育的模型演变、MADS-box基因结构和基因重复、miRNA调控以及相关转录组分析的最新研究成果,并对花器官发育的研究前景进行了展望。  相似文献   

2.
周蕾  高峰   《广西植物》2005,25(6):579-583
主要论述了花发育过程中花器官同源异形基因及其相关基因的调控机理。基因调控是一个复杂的 系统,花同源异形基因既受到上游基因的调控,同时又决定了下游基因的表达。对花发育基因调控的研究,不 仅可以从微观水平了解植物花发育的分子机制,同时对花卉等作物的遗传育种也具有重要的指导意义。  相似文献   

3.
植物从营养生长向生殖生长的转变和花器官的正常发育是其繁衍的基础.综述了控制植物花器官发育的ABC模型的提出和发展,以及已经克隆的A、B、C、E类基因和其表达调控机理研究的最新进展.  相似文献   

4.
植物成花分子机理研究的进展   总被引:7,自引:0,他引:7  
植物在成花诱导结束后,转变为花分生组织,而后分化产生花器官。文中着重介绍了花器官形成分化ABC模型及基因调控的分子机理。  相似文献   

5.
胚珠是花中重要的生殖器官。通过同源异形现象、同源异形突变体和同源异形基因研究的发展,介绍花器官特征决定的模型——ABC模型、ABCDE模型和四因子模型,以此说明胚珠在花器官中作为第5轮花器官的支持证据,同时简要介绍胚珠特征决定基因在模式植物拟南芥、矮牵牛和水稻中的研究概况。  相似文献   

6.
简要介绍了花器官决定的同源异型基因作用模型——ABC模型的产生和发展过程。从早期ABC模型发展到经典ABC模型,然后到ABCD模型,最后到A-E模型。花器官发育遗传学的创立和发展是ABC模型产生的基础,ABC模型的建立促进了花器官发育遗传学的发展,而后者进一步发展的结果又促使前者更加完善,从而进一步发展为四因子模型。  相似文献   

7.
花器官决定的ABC模型和四因子模型   总被引:5,自引:1,他引:4  
简要介绍了花器官决定的同源异型基因作用模型--ABC模型的产生和发展过程.从早期ABC模型发展到经典ABC模型,然后到ABCD模型,最后到A-E模型.花器官发育遗传学的创立和发展是ABC模型产生的基础,ABC模型的建立促进了花器官发育遗传学的发展,而后者进一步发展的结果又促使前者更加完善,从而进一步发展为四因子模型.  相似文献   

8.
发育生物学实验是大多数本科院校的一门独立课程,在学生的知识结构与认知体系中占有非常重要的地位。从学科自身特点出发,在基础性实验课程的基础上,以植物花器官发育的机理研究为切入点,以模式植物本氏烟草(Nicotiana benthamiana)为材料,选取ABC模型中任何一类基因,运用VIGS的实验方法,设计3个单元的综合性实验,旨在提高发育生物学实验的教学质量与学习效果,使学生理解花器官发育的分子机理,培养学生的实验动手能力与科研创新能力。  相似文献   

9.
长期以来.植物生殖发育学家们都在寻找控制花器官发育的基因.经过多年研究提出了著名的花发育“ABC”模型。该模型概括了在花的不同部位,不同类型的基因是怎样起作用,从而控制花部器官发育的,但这一模型仍有很多不清楚的地方。  相似文献   

10.
百脉根BIO和豌豆突变位点ELE2的比较基因组定位(英文)   总被引:1,自引:0,他引:1  
豆科两侧对称花的花瓣具有背腹(DV)的分化以及可变的器官内部(IN)非对称性,在大小与形状上显示出不同的发育特征;因而花瓣的发育为克隆决定植物器官的形状与大小的关键基因提供了很好的实验系统。本研究对百脉根中BIO基因进行研究。百脉根bio突变体具有多效性,既影响花器官内部的对称性也影响器官的大小和育性,豌豆ele突变体的表型与bio相似。定位结果表明BIO和ELE2位于豆科基因组的共线性区段,提示BIO和ELE2可能是同源基因突变所致。本研究利用比较基因组定位方法,将BIO和ELE2候选基因锚定在豆科模式植物百脉根和蒺藜苜蓿基因组含有11个同源基因的BAC重叠群上。BIO和ELE2基因的克隆将有助于揭示豆科花瓣形态和大小调控的分子机理,进而为豆科作物遗传改良提供分子理论基础。  相似文献   

11.
12.
Three ways to learn the ABCs   总被引:12,自引:0,他引:12  
  相似文献   

13.
Flowers consist primarily of four basic organ types whose relative positions are universally conserved within the angiosperms. A model has been proposed to explain how a small number of regulatory genes, acting alone and in combination, specify floral organ identity. This model, known widely as the ABC model of flower development, is based on molecular generic experiments in two model organisms,Arabidopsis thaliana and Antirrhinum majus.Both of these species are considered to be eudicots, a clade within the angiosperms with a relatively conserved floral architecture. In this review, the application of the ABC model derived from studies of these typical eudicot species is considered with respect to angiosperms whose floral structure deviates from that of the eudicots. It is concluded that the model is universally applicable to the angiosperms as a whole, and the enormous diversity seen among angiosperms flowers is due to genetic pathways that are downstream, or independent, of the genetic programme that specifies floral organ identity.  相似文献   

14.
Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.  相似文献   

15.
At the beginning of the 1990s, a simple genetic model that explained flower development was presented based on Arabidopsis thaliana and Antirrhinum majus floral homeotic mutants. According to this model, which is a milestone in plant development studies, flower development can be explained by three classes of genes (A, B and C), each one controlling the identity of organs in two adjacent whorls. Intriguingly, more than 20 years later, there are still some unanswered questions, in particular regarding the universality of the class A-function genes. Class A genes are well characterised in A. thaliana, but so far no A mutants have been described in other plant species nor in Antirrhinum majus. Here, we retrace the story that led to the proposal of the ABC model focusing on the contribution of A. majus to this model. Although fewer groups are still using A. majus as a model system, this plant was a master contributor to our comprehension of the molecular networks controlling flower development.  相似文献   

16.
The well‐known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B‐ and C‐functions are highly conserved throughout flowering plants and even in gymnosperms, the A‐function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL‐like subfamily of MADS‐box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass‐specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)‐function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL‐like genes were independently recruited to fulfil the (A)‐function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.  相似文献   

17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号