首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   5篇
  2023年   2篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1988年   2篇
  1982年   1篇
排序方式: 共有75条查询结果,搜索用时 253 毫秒
1.
2.
Summary During five 28-hours measurements in 1981, the oxygen production and consumption in an eelgrass community in saline Lake Grevelingen were investigated using light plexiglass enclosures. Applying a conversion factor of 0.29 the amount of carbon fixed and the amount of organic carbon mineralized were estimated. Gross and net production were estimated over 24-hours periods.There appeared to be a good correlation between production and insolation on the water surface. For every measurement period the production as a function of light and aboveground eelgrass biomass in the enclosure were calculated. This showed a maximum of 5.10–6 mg C.J.–1 g dry weight–1 in April and minimum of 1.4.10–6 mg C.J.–1 g–1 in August.Using the calculated production coefficients, the insolation and the eelgrass biomass the gross production, net production and consumption during the growing season of 1976 were calculated. Gross production amounted to 340 gC.m–2, and net production came to 130 g C.m–2. Approximately 60 gC.m–2 was respired by the eelgrass plants while the remaining 150 gC.m–2 was consumed or mineralized by other organisms on the sampling spot. Approximately 120 g C.m–2.yr–1 was transported by wind and wave action towards the eastern part of the lake where it became anaerobically degraded. This resulted in the formation of sulfide and methane.Communication no. 236 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands.  相似文献   
3.
4.
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.Plant cells are surrounded by a flexible yet durable extracellular matrix that makes up the cell wall. This structure offers mechanical strength that counters osmotically driven turgor pressure, is an important factor for water movement in plants, acts as a physical barrier against pathogens (Somerville et al., 2004), and is a determining factor for plant cell morphogenesis. Hence, the cell wall plays a central role in plant biology.Two main types of cell walls can typically be distinguished: the primary and the secondary cell wall. The major load-bearing component in both of these cell walls is the β-1,4-linked glucan polymer cellulose (Somerville et al., 2004). Cellulose polymers are synthesized by plasma membrane (PM)-localized cellulose synthase (CesA) complexes (Mueller and Brown, 1980), which contain several CesA subunits with similar amino acid sequences (Mutwil et al., 2008a). The primary wall CesA complexes are believed to be assembled in the Golgi and are subsequently delivered to the PM via vesicular trafficking (Gutierrez et al., 2009), sometimes associated with Golgi pausing (Crowell et al., 2009). Furthermore, the primary wall CesA complexes are preferentially inserted into the PM at sites that coincide with cortical microtubules (MTs), which subsequently guide cellulose microfibril deposition (Gutierrez et al., 2009). Hence, the cortical MT array is a determinant for multiple aspects of primary wall cellulose production.The actin cytoskeleton plays a crucial role in organized deposition of cell wall polymers in many cell types, including cellulose-related polymers and pectins in tip-growing cells, such as pollen tubes and root hairs (Hu et al., 2003; Chen et al., 2007). Thus, actin-depolymerizing drugs and genetic manipulation of ACTIN genes impair directed expansion of tip-growing cells and long-distance transport of Golgi bodies with vesicles to growing regions (Ketelaar et al., 2003; Szymanski, 2005). In diffusely growing cells in roots and hypocotyls, loss of anisotropic growth has also been observed in response to mutations to vegetative ACTIN genes and to actin-depolymerizing and -stabilizing drugs (Baluska et al., 2001; Kandasamy et al., 2009). While actin is clearly important for cell wall assembly, it is less clear what precise roles it plays.One well-known function of actin in higher plants is to support intracellular movement of cytoplasmic organelles via actomyosin-based motility (Geisler et al., 2008; Szymanski, 2009). During primary wall synthesis in interphase cells, treatment with the actin assembly inhibitor latrunculin B (LatB) led to inhibition of Golgi motility and pronounced inhomogenities in CesA density at the PM (Crowell et al., 2009; Gutierrez et al., 2009) that coincided with the density of underlying and immobile Golgi bodies (Gutierrez et al., 2009). These results suggested that Golgi motility is important for CesA distribution (Gutierrez et al., 2009). The actin cytoskeleton also appears to be important for secondary wall cellulose microfibril deposition. For example, longitudinal actin filaments (AFs) define the movement of secondary wall CesA-containing Golgi bodies in developing xylem vessels (Wightman and Turner, 2008). In addition, it has been proposed that the AFs also can regulate the delivery of the secondary wall CesA complex to the PM via pausing of the Golgi (Wightman and Turner, 2008). It is therefore clear that actin organization is important for CesA distribution and for the pattern of cellulose microfibril deposition.Despite the above findings, very few reports have undertaken detailed studies to elucidate the role of the actin cytoskeleton in the distribution and trafficking of specific proteins in plant cells. Here, we have investigated the intracellular trafficking of CesA-containing vesicles and delivery of CesAs to the PM, in the context of the actin cytoskeleton. We quantitatively demonstrate that the organization of the actin cytoskeleton regulates CesA-containing Golgi distribution and the exocytic and endocytic rate of the CesAs. However, actin organization has no effect on the localized insertion of CesAs at sites of MTs at the PM.  相似文献   
5.
6.
An important mechanism in stabilizing tightly linked host-parasitoid and prey-predator interactions is the presence of refuges that protect organisms from their natural enemies. However, the presence and quality of refuges can be strongly affected by the environment. We show that infection of the host plant Silene latifolia by its specialist fungal plant pathogen Microbotryum violaceum dramatically alters the enemy-free space of a herbivore, the specialist noctuid seed predator Hadena bicruris, on their shared host plant. The pathogen arrests the development of seed capsules that serve as refuges for the herbivore's offspring against the specialist parasitoid Microplitis tristis, a major source of mortality of H. bicruris in the field. Pathogen infection resulted both in lower host-plant food quality, causing reduced adult emergence, and in twofold higher rates of parasitism of the herbivore. We interpret the strong oviposition preference of H. bicruris for uninfected plants in the field as an adaptive response, positioning offspring on refuge-rich, high-quality hosts. To our knowledge, this is the first demonstration that plant-inhabiting micro-organisms can affect higher trophic interactions through alteration of host refuge quality. We speculate that such interference can potentially destabilize tightly linked multitrophic interactions.  相似文献   
7.
Coastal development in Banten Bay, Indonesia, decreased seagrass coverage to only 1.5% of its surface area. We investigated the importance of seagrass as habitat for juvenile groupers (Serranidae) and snappers (Lutjanidae), by performing beam trawl hauls on a weekly basis in two seagrass locations and one mudflat area, and monthly trawl hauls in three different microhabitats (dense, mixed and patchy seagrass) in one of the seagrass locations. We studied the effects of location and microhabitat, as well as temporal patterns (diel, weekly and monthly) on the probability of occurrence and abundance of the most abundant grouper (Orange-spotted grouper, Epinephelus coioides) and snapper (Russell’s snapper, Lutjanus russellii). We found that both species were almost exclusively found in seagrass locations, with a preference for microhabitats of high complexity (dense and mixed microhabitats). L. russellii had a higher probability of catch and abundance during the night, most probably because of its ability to avoid the beam trawl during daytime sampling. In addition there was an effect of week and month on the presence and abundance of both species, but patterns were unclear, probably because of high fishing pressure on juvenile groupers and snappers by push net fishermen. Groupers and snappers mainly fed on abundant shrimps, and to a lesser extent on fish. Moreover, juveniles find protection against predators in seagrass, which confirmed the critical role of quantity and quality of seagrass areas for juvenile groupers and snappers in Banten Bay.  相似文献   
8.
Habitat fragmentation can disrupt communities of interacting species even if only some of the species are directly affected by fragmentation. For instance, if parasitoids disperse less well than their herbivorous hosts, habitat fragmentation may lead to higher herbivory in isolated plant patches due to the absence of the third trophic level. Community-level studies suggest that parasitoids tend to have limited dispersal abilities, on the order of tens of metres, much smaller than that of their hosts, while species-oriented studies document dispersal by parasitoids on the scale of kilometres. In this study the distribution patterns of three parasitoid species with different life histories and their moth host, Hadena bicruris, a specialist herbivore of Silene latifolia, were compared in a large-scale network of natural fragmented plant patches along the rivers Rhine and Waal in the Netherlands. We examined how patch size and isolation affect the presence of each species. Additionally, experimental plots were used to study the colonisation abilities of the species at different distances from source populations.In the natural plant patches the presence of the herbivore and two of the parasitoids, the gregarious specialist Microplitis tristis and the gregarious generalist Bracon variator were not affected by patch isolation at the scale of the study, while the solitary specialist Eurylabus tristis was. In contrast to the herbivore, the presence of all parasitoid species declined with plant patch size. The colonisation experiment confirmed that the herbivore and M. tristis are good dispersers, able to travel at least 2 km within a season. B. variator showed intermediate colonisation ability and E. tristis showed very limited colonisation ability at this spatial scale. Characteristics of parasitoid species that may contribute to differences in their dispersal abilities are discussed.  相似文献   
9.
Gregarious koinobiont parasitoids attacking a range of host sizes have evolved several mechanisms to adapt to variable host resources, including the regulation of host growth, flexibility in larval development rate, and adjustment of clutch size. We investigated whether the first two mechanisms are involved in responses of the specialist gregarious parasitoid Microplitis tristis Nees (Hymenoptera: Braconidae) to differences in the larval weight and parasitoid load of its host Hadena bicruris Hufn. (Lepidoptera: Noctuidae). In addition, we examined the effects of parasitism on food consumption by the host. Parasitoids were offered caterpillars of different weight from all five instars, and parasitoid fitness correlates, including survival, development time, and cocoon weight, were recorded. Furthermore, several host growth parameters and food consumption of parasitized and unparasitized hosts were measured. Our results show that M. tristis responds to different host weights by regulating host growth and by adjusting larval development rate. In hosts with small weights, development time was increased, but the increase was insufficient to prevent a reduction in cocoon weight, and as a result parasitoids experienced a lower chance of successful eclosion. Cocoon weight was negatively affected by parasitoid load, even though host growth was positively affected by parasitoid load, especially in hosts with small weights. Later instars were more optimal for growth and development of M. tristis than early instars, which might reflect an adaptation to the life‐history of the host, whose early instars are usually concealed and inaccessible for parasitism on its food plant, Silene latifolia Krause (Caryophyllaceae). Parasitism by M. tristis greatly reduced total host food consumption for all instar stages. Whether plants can benefit directly from the attraction of gregarious koinobiont parasitoids of their herbivores is a subject of current debate. Our results indicate that, in this system, the attraction of a gregarious koinobiont parasitoid can directly benefit the plant by reducing the number of seeds destroyed by the herbivore.  相似文献   
10.
Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical scales with varying time series durations and methodologies. Here, we studied differential effects of temperature on resident and migratory birds using the mean egg laying initiation dates from 10 European nest box schemes between 1991 and 2015 that had data on at least one resident tit species and at least one migratory flycatcher species. We found that both tits and flycatchers advanced laying in response to spring warming, but resident tit populations advanced more strongly in relation to temperature increases than migratory flycatchers. These different temperature responses have already led to a divergence in laying dates between tits and flycatchers of on average 0.94 days per decade over the current study period. Interestingly, this divergence was stronger at lower latitudes where the interval between tit and flycatcher phenology is smaller and winter conditions can be considered more favorable for resident birds. This could indicate that phenological adjustment to climate change by flycatchers is increasingly hampered by competition with resident species. Indeed, we found that tit laying date had an additional effect on flycatcher laying date after controlling for temperature, and this effect was strongest in areas with the shortest interval between both species groups. Combined, our results suggest that the differential effect of climate change on species groups with overlapping breeding ecology affects the phenological interval between them, potentially affecting interspecific interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号