首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2013年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
  1905年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
The use of ultra performance liquid chromatography coupled to data independent tandem mass spectrometry with traveling wave ion mobility for detection and structural identification of ether‐linked glycerophosphoethanolamine is described. The experimental design generates 4D data (chromatographic retention time, precursor accurate mass, drift time with associated calculated collisional cross‐section, and time‐aligned accurate mass diagnostic product ions) for each ionization mode. Confident structure identification depends on satisfying 4D data confirmation in both positive and negative ion mode. Using this methodology, a number of ether‐linked glycerophosphoethanolamine lipids are structurally elucidated from mouse brain lysosomes. It is further determined that several ether‐linked glycerophosphoethanolamine structures are differentially abundant between lysosomes isolated from mouse cortex following traumatic brain injury as compared to that of sham animals. The combined effort of aligning multi‐dimensional mass spectrometry data with a well‐defined traumatic brain injury model lays the foundation for gaining mechanistic insight in the role lysosomal membrane damage plays in neuronal cell death following brain injury.  相似文献   
2.
Two homologous cotton (Gossypium hirsutum L.) genes, GhCTL1 and GhCTL2, encode members of a new group of chitinase-like proteins (called the GhCTL group) that includes other proteins from two cotton species, Arabidopsis, rice, and pea. Members of the GhCTL group are assigned to family GH19 glycoside hydrolases along with numerous authentic chitinases (http://afmb.cnrs-mrs.fr/CAZY/index.html), but the proteins have novel consensus sequences in two regions that are essential for chitinase activity and that were previously thought to be conserved. Maximum parsimony phylogenetic analyses, as well as Neighbor-Joining distance analyses, of numerous chitinases confirmed that the GhCTL group is distinct. A molecular model of GhCTL2 (based on the three-dimensional structure of a barley chitinase) had changes in the catalytic site that are likely to abolish catalytic activity while retaining potential to bind chitin oligosaccharides. RNA blot analysis showed that members of the GhCTL group had preferential expression during secondary wall deposition in cotton lint fiber. Cotton transformed with a fusion of the GhCTL2 promoter to the beta -d-glucuronidase gene showed preferential reporter gene activity in numerous cells during secondary wall deposition. Together with evidence from other researchers that mutants in an Arabidopsis gene within the GhCTL group are cellulose-deficient with phenotypes indicative of altered primary cell walls, these data suggest that members of the GhCTL group of chitinase-like proteins are essential for cellulose synthesis in primary and secondary cell walls. However, the mechanism by which they act is more likely to involve binding of chitin oligosaccharides than catalysis.  相似文献   
3.
Virus clearance by depth filtration has not been well‐understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter‐ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ~2.1–3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:431–437, 2015  相似文献   
4.
One of the critical steps in high throughput crystallography that so far has evaded automation is the actual harvesting of the delicate crystals from the mother liquor in which they are growing. The late-stage operation of harvesting is presently a most risky and loss-intensive procedure, compounded by its tight integration with the critical steps of cryo-protection and cryo-quenching. Recent advances in micromanipulation robotics and micro-fabrication have made it possible to seriously consider automation of protein crystal harvesting. Based on the experience gained during the development of an operator-assisted (and now operator-assisting) universal micromanipulation robot (UMR) prototype, we discuss the challenges ahead for the design of a fully autonomous, integrated system capable of the reliable harvesting of protein microcrystals. Experience from participation in NIH structural genomics projects and feedback from bottleneck workshops indicates that genuine demand exists in the high throughput community as well as in pharmaceutical production pipelines, justifying the effort and resources to develop autonomous harvesting robotics.  相似文献   
5.
The demonstration unit of the Universal Micromanipulation Robot (UMR) capable of semi-autonomous protein crystal harvesting has been tested and evaluated by independent users. We report the status and capabilities of the present unit scheduled for deployment in a high-throughput protein crystallization center. We discuss operational aspects as well as novel features such as micro-crystal handling and drip-cryoprotection, and we extrapolate towards the design of a fully autonomous, integrated system capable of reliable crystal harvesting. The positive to enthusiastic feedback from the participants in an evaluation workshop indicates that genuine demand exists and the effort and resources to develop autonomous protein crystal harvesting robotics are justified.  相似文献   
6.
Glycogen is a cellular energy store that is crucial for whole body energy metabolism, metabolic regulation and exercise performance. To understand glycogen structure we have purified glycogen particles from rat liver and human skeletal muscle tissues and compared their biophysical properties with those found in commercial glycogen preparations. Ultrastructural analysis of commercial liver glycogens fails to reveal the classical α-rosette structure but small irregularly shaped particles. In contrast, commercial slipper limpet glycogen consists of β-particles with similar branching and chain lengths to purified rat liver glycogen together with a tendency to form small α-particles, and suggest it should be used as a source of glycogen for all future studies requiring a substitute for mammalian liver glycogen.  相似文献   
7.
Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML.  相似文献   
8.
Mammalian cells synthesize H2S from sulfur-containing amino acids and are also exposed to exogenous sources of this signaling molecule, notably from gut microbes. As an inhibitor of complex IV in the electron transport chain, H2S can have a profound impact on metabolism, suggesting the hypothesis that metabolic reprogramming is a primary mechanism by which H2S signals. In this study, we report that H2S increases lipogenesis in many cell types, using carbon derived from glutamine rather than from glucose. H2S-stimulated lipid synthesis is sensitive to the mitochondrial NAD(P)H pools and is enabled by reductive carboxylation of α-ketoglutarate. Lipidomics analysis revealed that H2S elicits time-dependent changes across several lipid classes, e.g., upregulating triglycerides while downregulating phosphatidylcholine. Direct analysis of triglyceride concentration revealed that H2S induces a net increase in the size of this lipid pool. These results provide a mechanistic framework for understanding the effects of H2S on increasing lipid droplets in adipocytes and population studies that have pointed to a positive correlation between cysteine (a substrate for H2S synthesis) and fat mass.  相似文献   
9.
Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4‐KD, miRNA156‐OE, MYB4‐OE, COMT‐KD and FPGS‐KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second‐ versus the first‐year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second‐year growth of transgenics targeted for wall modification, GAUT4‐KD, MYB4‐OE, COMT‐KD and FPGS‐KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next‐generation bio‐feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.  相似文献   
10.
The relationship between vegetation cover and soil seed banks was studied in five different ungulate herbivore-prairie dog treatment combinations at three northern mixed-grass prairie sites in Badlands National Park, South Dakota. There were distinct differences in both the seed bank composition and the aboveground vegetation between the off-prairie dog colony treatments and the on-colony treatments. The three on-colony treatments were similar to each other at all three sites with vegetation dominated by the forbs Dyssodia papposa, Hedeoma spp., Sphaeralcea coccinea, Conyza canadensis, and Plantago patagonica and seed banks dominated by the forbs Verbena bracteata and Dyssodia papposa. The two off-colony treatments were also similar to each other at all three sites. Vegetation at these sites was dominated by the grasses Pascopyrum smithii, Bromus tectorum and Bouteloua gracilis and the seed banks were dominated by several grasses including Bromus tectorum, Monroa squarrosa, Panicum capillare, Sporobolus cryptandra and Stipa viridula. A total of 146 seedlings representing 21 species germinated and emerged from off-colony treatments while 3069 seedlings comprising 33 species germinated from on-colony treatments. Fifteen of the forty species found in soil seed banks were not present in the vegetation, and 57 of the 82 species represented in the vegetation were not found in the seed banks. Few dominant species typical of mixed-grass prairie vegetation germinated and emerged from seed banks collected from prairie dog colony treatments suggesting that removal of prairie dogs will not result in the rapid reestablishment of representative mixed-grass prairie unless steps are taken to restore the soil seed bank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号