首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
  国内免费   10篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   9篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  1999年   2篇
  1997年   2篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
Major depressive disorder (MDD) is a widespread and debilitating mental disorder. However, there are no biomarkers available to aid in the diagnosis of this disorder. In this study, a nuclear magnetic resonance spectroscopy–based metabonomic approach was employed to profile urine samples from 82 first-episode drug-naïve depressed subjects and 82 healthy controls (the training set) in order to identify urinary metabolite biomarkers for MDD. Then, 44 unselected depressed subjects and 52 healthy controls (the test set) were used to independently validate the diagnostic generalizability of these biomarkers. A panel of five urinary metabolite biomarkers—malonate, formate, N-methylnicotinamide, m-hydroxyphenylacetate, and alanine—was identified. This panel was capable of distinguishing depressed subjects from healthy controls with an area under the receiver operating characteristic curve (AUC) of 0.81 in the training set. Moreover, this panel could classify blinded samples from the test set with an AUC of 0.89. These findings demonstrate that this urinary metabolite biomarker panel can aid in the future development of a urine-based diagnostic test for MDD.Major depressive disorder (MDD)1 is a debilitating mental disorder affecting up to 15% of the general population and accounting for 12.3% of the global burden of disease (1, 2). Currently, the diagnosis of MDD still relies on the subjective identification of symptom clusters rather than empirical laboratory tests. The current diagnostic modality results in a considerable error rate (3), as the clinical presentation of MDD is highly heterogeneous and the current symptom-based method is not capable of adequately characterizing this heterogeneity (4). An approach that can be used to circumvent these limitations is to identify disease biomarkers to support objective diagnostic laboratory tests for MDD.Metabonomics, which can measure the small molecules in given biosamples such as plasma and urine without bias (5), has been extensively used to characterize the metabolic changes of diseases and thus facilitate the identification of novel disease-specific signatures as putative biomarkers (610). Nuclear magnetic resonance (NMR) spectroscopy–based metabonomic approaches characterized by sensitive, high-throughput molecular screening have been employed previously in identifying novel biomarkers for a variety of neuropsychiatric disorders, including stroke, bipolar disorder, and schizophrenia (1113).Specifically with regard to MDD, several animal studies have already characterized the metabolic changes in the blood and urine (1419). These studies provide valuable clues as to the pathophysiological mechanism of MDD. However, no study has been designed with the aim of diagnosing this disease. Recently, using an NMR-based metabonomic approach, this research group identified a unique plasma metabolic signature that enables the discrimination of MDD from healthy controls with both high sensitivity and specificity (20). These findings motivated further study on urinary diagnostic metabolite biomarkers for MDD, which would be more valuable from a clinical applicability standpoint, as urine can be more non-invasively collected. Moreover, previous studies have also demonstrated the feasibility of identifying diagnostic metabolite biomarkers of psychiatric disorders in the urine. For example, using an NMR-based metabonomics approach, Yap et al. (21) identified a unique urinary metabolite signature that clearly discriminated autism patients from healthy controls. As systemic metabolic disturbances have been observed in the urine of a depressed animal model, it is likely that diagnostic metabolite markers for MDD can be detected in human urine.Therefore, in this study, NMR spectroscopy combined with multivariate pattern recognition techniques were used to profile 82 first-episode drug-naïve MDD subjects and 82 healthy controls (the training set) in order to identify potential metabolite biomarkers for MDD. Furthermore, 44 unselected MDD subjects and 52 healthy controls (the test set) were employed to independently validate the diagnostic performance of these urinary metabolite biomarkers.  相似文献   
2.
目的观察正常大鼠胃组织中肌球蛋白轻链激酶的表达及分布特点。方法取11只SD正常雄性大鼠,在饥饿状态下,处死后取胃组织。通过免疫组化染色,观察正常大鼠胃组织中MLCK的表达及分布。结果MLCK在黏膜肌层、肌层和黏膜下层血管壁平滑肌均有大量表达;在胃底腺中,MLCK主要表达于壁细胞和主细胞胞浆内。结论MLCK不仅存在于平滑肌细胞内,还分布于胃底腺壁细胞和主细胞内,可能参与胃底腺腺细胞的分泌活动。  相似文献   
3.
The purpose of this study is to investigate the effect of Cr deficiency on the rat retina. Three-week-old Wistar Kyoto rats were divided into 2 groups. Cr-deficient rats were fed AIN-93G diet without Cr and deionized distilled water. Control rats were fed AIN-93G diet and deionized distilled water. The Cr and sugar concentrations in the whole blood and cholesterol concentration in the serum were measured. We observed the retina with an electron microscope, and counted phagocytized lamellar structures in the retinal pigment epithelium (RPE) before and after the start of light exposure on negative electron microscopic films. The whole blood Cr level of Cr-deficient rats was less than 0.2 microg/l. The blood sugar level of Cr-deficient rats was significantly higher than that of normal rats (p < 0.05). There were significantly more phagocytized lamellar structures in the RPE of Cr-deficient rats 1, 2, 7, 11 and 12 h after the start of light exposure than in that of normal rats (p < 0.05). However, no morphological abnormalities were found in the photoreceptor cells of Cr-deficient rats. Phagocytosis in the photoreceptor outer segment discs in the RPE was accelerated, but the pattern of the retinal circadian rhythm with maximum phagocytosis 2 h after exposure to light was unchanged. The Cr-deficient state may cause the membrane to degenerate, and phagocytosis of the photoreceptor outer segment discs in the RPE may be accelerated. This study provided an evidence of the nutritional importance of Cr in rat retina.  相似文献   
4.
A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-β4; BK-α/β4). We hypothesized that aldo causes an osmotic diuresis by increasing BK-α/β4-mediated K secretion in LNaHK mice. We found that the plasma aldo concentration (P[aldo]) was elevated by 10-fold in LNaHK mice compared with control diet (Con) mice. We subjected LNaHK mice to either sham surgery (sham), adrenalectomy (ADX) with low aldo replacement (ADX-LA), or ADX with high aldo replacement (ADX-HA). Compared to sham, the urinary flow, K excretion rate, transtubular K gradient (TTKG), and BK-α and BK-β4 expressions, were decreased in ADX-LA, but not different in ADX-HA. BK-β4 knockout (β4KO) and WT mice exhibited similar K clearance and TTKG in the ADX-LA groups; however, in sham and ADX-HA, the K clearance and TTKG of β4KO were less than WT. In response to amiloride treatment, the osmolar clearance was increased in WT Con, decreased in WT LNaHK, and unchanged in β4KO LNaHK. These data show that the high P[aldo] of LNaHK mice is necessary to generate a high rate of BK-α/β4-mediated K secretion, which creates an osmotic diuresis that may contribute to a reduction in CV disease.  相似文献   
5.
Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorption through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases.  相似文献   
6.
The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum-Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.  相似文献   
7.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号