首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13C-atoms from 1-[13C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner.  相似文献   
2.
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 ± 0.24 mol of acetate and 0.16 ± 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-13C]crotonate was metabolized to [1,2-13C]acetate and [1,2,3,4,5,7-13C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [13C]sodium bicarbonate formed [6-13C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-13C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [13C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-13C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO2 addition, rather than the use of the intact four-carbon skeleton of crotonate.  相似文献   
3.
Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.  相似文献   
4.
In methanogenic environments, the main fate of benzoate is its oxidization to acetate, H(2) and CO(2) by syntrophic associations of hydrogen-producing benzoate degraders and hydrogen-using methanogens. Here, we report the use of benzoate as an electron acceptor. Pure cultures of S. aciditrophicus simultaneously degraded crotonate and benzoate when both substrates were present. The growth rate was 0.007 h(-1) with crotonate and benzoate present compared with 0.025 h(-1) with crotonate alone. After 8 days of incubation, 4.12 +/- 0.50 mM of cyclohexane carboxylate and 8.40 +/- 0.61 mM of acetate were formed and 4.0 +/- 0.04 mM of benzoate and 4.8 +/- 0.5 mM of crotonate were consumed. The molar growth yield was 22.7 +/- 2.1 g (dry wt) of cells per mol of crotonate compared with about 14.0 +/- 0.1 g (dry wt) of cells per mol of crotonate when S. aciditrophicus was grown with crotonate alone. Cultures grown with [ring-(13)C]-benzoate and unlabelled crotonate initially formed [ring-(13)C]-labelled cyclohexane carboxylate. No (13)C-labelled acetate was detected. In addition to cyclohexane carboxylate, (13)C-labelled cyclohex-1-ene carboxylate was detected as an intermediate. Once almost all of the benzoate was gone, carbon isotopic analyses showed that cyclohexane carboxylate was formed from both labelled and non-labelled metabolites. Glutarate and pimelate were also detected at this time and carbon isotopic analyses showed that each was made from a mixture labelled and non-labelled metabolites. The increase in molar growth yield with crotonate and benzoate and the formation of [ring-(13)C]-cyclohexane carboxylate from [ring-(13)C]-benzoate in the presence of crotonate are consistent with benzoate serving as an electron acceptor.  相似文献   
5.
6.
Thermophilic anaerobic noncellulolytic Thermoanaerobacter species are of great biotechnological importance in cellulosic ethanol production due to their ability to produce high ethanol yields by simultaneous fermentation of hexose and pentose. Understanding the genome structure of these species is critical to improving and implementing these bacteria for possible biotechnological use in consolidated bioprocessing schemes (CBP) for cellulosic ethanol production. Here we describe a comparative genome analysis of two ethanologenic bacteria, Thermoanaerobacter sp. X514 and Thermoanaerobacter pseudethanolicus 39E. Compared to 39E, X514 has several unique key characteristics important to cellulosic biotechnology, including additional alcohol dehydrogenases and xylose transporters, modifications to pentose metabolism, and a complete vitamin B12 biosynthesis pathway. Experimental results from growth, metabolic flux, and microarray gene expression analyses support genome sequencing-based predictions which help to explain the distinct differences in ethanol production between these strains. The availability of whole-genome sequence and comparative genomic analyses will aid in engineering and optimizing Thermoanaerobacter strains for viable CBP strategies.  相似文献   
7.
Polycyclic aromatic hydrocarbons are among the most hazardous environmental pollutants. However, in contrast to aerobic degradation, the respective degradation pathways in anaerobes are greatly unknown which has so far prohibited many environmental investigations. In this work, we studied the enzymatic dearomatization reactions involved in the degradation of the PAH model compounds naphthalene and 2‐methylnaphthalene in the sulfate‐reducing enrichment culture N47. Cell extracts of N47 grown on naphthalene catalysed the sodium dithionite‐dependent four‐electron reduction of the key intermediate 2‐naphthoyl‐coenzyme A (NCoA) to 5,6,7,8‐tetrahydro‐2‐naphthoyl‐CoA (THNCoA). The NCoA reductase activity was independent of ATP and was, surprisingly, not sensitive to oxygen. In cell extracts in the presence of various electron donors the product THNCoA was further reduced by a two‐electron reaction to most likely a conjugated hexahydro‐2‐naphthoyl‐CoA isomer (HHNCoA). The reaction assigned to THNCoA reductase strictly depended on ATP and was oxygen‐sensitive with a half‐life time between 30 s and 1 min when exposed to air. The rate was highest with NADH as electron donor. The results indicate that two novel and completely different dearomatizing ring reductases are involved in anaerobic naphthalene degradation. While the THNCoA reducing activity shows some properties of ATP‐dependent class I benzoyl‐CoA reductases, NCoA reduction appears to be catalysed by a previously unknown class of dearomatizing aryl‐carboxyl‐CoA reductases.  相似文献   
8.
Polycyclic aromatic hydrocarbons such as naphthalene are recalcitrant environmental pollutants that are only slowly metabolized by bacteria under anoxic conditions. Based on metabolite analyses of culture supernatants, carboxylation or methylation of naphthalene have been proposed as initial enzymatic activation reactions in the pathway. However, the extremely slow growth of anaerobic naphthalene degraders with doubling times of weeks and the little biomass obtained from such cultures hindered the biochemical elucidation of the initial activation reaction, so far. Here, we provide biochemical evidence that anaerobic naphthalene degradation is initiated via carboxylation. Crude cell extracts of the sulfate-reducing enrichment culture N47 converted naphthalene and (13) C-labelled bicarbonate to 2-[carboxyl-(13) C]naphthoic acid at a rate of 0.12?nmol min(-1) mg protein(-1) . The enzyme, namely naphthalene carboxylase, catalysed a much faster exchange of (13) C-labelled bicarbonate with the carboxyl group of 2-[carboxyl-(12) C]naphthoic acid at a rate of 3.2?nmol min(-1) mg protein(-1) , indicating that the rate limiting step of the carboxylation reaction is the activation of the naphthalene molecule rather than the carboxylation itself. Neither the carboxylation nor the exchange reaction activities necessitate the presence of ATP or divalent metal ions and they were not inhibited by avidin or EDTA. The new carboxylation reaction is unprecedented in biochemistry and opens the door to understand the anaerobic degradation of polycyclic aromatic hydrocarbons which are among the most hazardous environmental contaminants.  相似文献   
9.
In anaerobic bacteria, most aromatic growth substrates are channelled into the benzoyl-coenzyme A (CoA) degradation pathway where the aromatic ring is dearomatized and cleaved into an aliphatic thiol ester. The initial step of this pathway is catalysed by dearomatizing benzoyl-CoA reductases yielding the two electron-reduction product, cyclohexa-1,5-diene-1-carbonyl-CoA, to which water is subsequently added by a hydratase. The next two steps have so far only been studied in facultative anaerobes and comprise the oxidation of the 6-hydroxyl-group to 6-oxocyclohex-1-ene-1-carbonyl-CoA (6-OCH-CoA), the addition of water and hydrolytic ring cleavage yielding 3-hydroxypimelyl-CoA. In this work, two benzoate-induced genes from the obligately anaerobic bacteria, Geobacter metallireducens (bamA(Geo)) and Syntrophus aciditrophicus (bamA(Syn)), were heterologously expressed in Escherichia coli, purified and characterized as 6-OCH-CoA hydrolases. Both enzymes consisted of a single 43 kDa subunit. Some properties of the enzymes are presented and compared with homologues from facultative anaerobes. An alignment of the nucleotide sequences of bamA(Geo) and bamA(Syn) with the corresponding genes from facultative anaerobes identified highly conserved DNA regions, which enabled the discrimination of genes coding for 6-OCH-CoA hydrolases from those coding for related enzymes. A degenerate oligonucleotide primer pair was deduced from conserved regions and applied in polymerase chain reaction reactions. Using these primers, the expected DNA fragment of the 6-OCH-CoA hydrolase genes was specifically amplified from the DNA of nearly all known facultative and obligate anaerobes that use aromatic growth substrates. The only exception was the aromatic compound-degrading Rhodopseudomonas palustris, which uniquely uses a modified benzoyl-CoA degradation pathway. Using the oligonucleotide primers, the expected DNA fragment was also amplified in a toluene-degrading and a m-xylene-degrading enrichment culture demonstrating its potential use in less defined bacterial communities. The gene probe established in this work provides for the first time a general tool for the detection of a central functionality in aromatic compound-degrading anaerobes.  相似文献   
10.
Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号