首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Zhang  Heng-Sheng  Ouyang  Bo  Ji  Xiong-Ying  Liu  Mei-Fang 《Neurochemical research》2021,46(7):1747-1758

Cerebral ischaemia/reperfusion (I/R) injury-induced irreversible brain injury is a major cause of mortality and functional impairment in ageing people. Gastrodin (GAS), derived from the traditional Chinese herbal medicine Tianma, has been reported to inhibit the progression of stroke, but the mechanism whereby GAS modulates the progression of cerebral I/R remains unclear. The middle cerebral artery occlusion method was used as a model of I/R in vivo. Rats were pretreated with GAS by intraperitoneal injection 7 days before I/R surgery and were then treated with GAS for 7 days after I/R surgery. Additionally, an oxygen–glucose deprivation/reoxygenation model using neuronal cells was established in vitro to simulate I/R injury. 2,3,5-Triphenyltetrazolium chloride and Nissl staining were used to evaluate infarct size and neuronal damage, respectively. Lactate dehydrogenase release and cell counting kit-8 assays were used to assess neuronal cell viability. Enzyme-linked immunosorbent assay, qPCR, flow cytometry and western blotting were performed to analyse the expression levels of inflammatory factors (IL-1β, IL-18), lncRNA NEAT1, miR-22-3p, NLRP3 and cleaved caspase-1. Luciferase reporter experiments were performed to verify the association between lncRNA NEAT1 and miR-22-3p. The results indicated that GAS could significantly improve the neurological scores of rats and reduce the area of cerebral infarction. Meanwhile, GAS inhibited pyroptosis by downregulating NLRP3, inflammatory factors (IL-1β, IL-18) and cleaved caspase-1. In addition, GAS attenuated I/R-induced inflammation in neuronal cells through the modulation of the lncRNA NEAT1/miR-22-3p axis. GAS significantly attenuated cerebral I/R injury via modulation of the lncRNA NEAT1/miR-22-3p axis. Thus, GAS might serve as a new agent for the treatment of cerebral I/R injury.

  相似文献   
2.
贴块法培养脑微血管内皮细胞(BMECs),倒置显微镜动态观察细胞生长及形态,Ⅷ因子相关抗原、CD34免疫细胞化学联合鉴定细胞并确定纯度。免疫细胞化学和Western印迹法检测药物转运体有机阴离子转运多肽亚型2(Oatp2)及P-糖蛋白(P-gp)在培养内皮细胞上的表达。结果显示,获得的BMECs呈多角形或铺路石形,单层贴壁生长;培养细胞Ⅷ因子相关抗原免疫细胞化学、CD34免疫荧光染色均为阳性,细胞纯度90%;培养细胞有Oatp2及P-gp表达,且二者均主要表达于BMECs细胞膜。提示贴块法可获得原代培养BMECs,方法简便易行,细胞纯度较高。原代培养的BMECs上有药物转运体Oatp2及P-gp的表达,为血脑屏障上药物转运体的体外研究提供了可能途径。  相似文献   
3.
探讨脑源性神经营养因子(brain derived neurotrophic factor, BDNF)对海马神经干细胞(neural progenitor/stem cells, NPCs)的存活、增殖及分化的影响.采用无血清培养基体外分离、纯化、扩增胎鼠海马NPCs.通过细胞形态观察、nestin免疫荧光染色及血清促分化检测NPCs的干细胞特性; 采用神经球计数及神经球直径测定观察BDNF对NPCs的促增殖作用, 筛选出在适当细胞密度下, 促进NPCs增殖的有效浓度; 采用Tunel染色及全自动生化分析仪测定细胞培养上清液乳酸脱氢酶(lactic dehydrogenase, LDH)的含量探讨BDNF对海马NPCs存活的影响; 采用抗-b-微管蛋白(tubulin) III (Tuj-1)染色检测NPCs分化成神经元的百分率, 同时测定分化神经元突起的长度.分离的海马NPCs表现为nestin 免疫染色阳性, 具有自我增殖能力、且能分化为神经元和星形胶质细胞; 当细胞密度为5×105个/ ml 时, 10~200 ng/ml BDNF能显著促进NPCs的增殖, 其中40 ng/ml BDNF促增殖作用最强, 40 ng/ml BDNF能显著增大神经球直径; 40 ng/ml BDNF 显著减少NPCs的凋亡率(Tunel /DAPI ), 抑制LDH漏出; 40 ng/ml BDNF能显著促进NPCs分化为Tuj-1免疫染色阳性神经元, 且分化后神经元的突起长度显著大于对照组.上述结果提示: BDNF促进海马NPCs的存活、增殖及向神经元方向分化.  相似文献   
4.
Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs’ differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号