首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   23篇
  国内免费   1篇
  2023年   6篇
  2022年   2篇
  2021年   15篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   7篇
  2016年   16篇
  2015年   17篇
  2014年   16篇
  2013年   15篇
  2012年   18篇
  2011年   14篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1972年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
1.
Varicose veins are the most common vascular disease in humans. Veins have valves that help the blood return gradually to the heart without leaking blood. When these valves become weak, blood and fluid collect and pool by pressing against the walls of the veins, causing varicose veins. In the cardiovascular system, mechanical forces are important determinants of vascular homeostasis and pathological processes. Blood vessels are constantly exposed to a variety of hemodynamic forces, including shear stress and environmental strains caused by the blood flow. In varicose veins within the leg, venous blood pressure rises in the vein of the lower extremities due to prolonged standing, creating a peripheral tension in the vessel wall thereby causing mechanical stimulation of endothelial cells and vascular smooth muscle. Studies have shown that long-term increased exposure to vascular wall tension is associated with the overexpression of HIF-1α and HIF-2α and increased levels of MMP-2 and MMP-9, thereby reducing venous contraction and progressive venous dilatation, which is involved in the development of varicose veins. Following the expression of metalloproteinase, the expression of type 1 collagen increases, and the amount of type 3 collagen decreases. Therefore, collagen imbalance will cause the varicose veins to not stretch. Loss of structural proteins (type 3 collagen and elastin) in the vessel wall causes the loss of the biophysical properties of the varicose vein wall. This review article tries to elaborate on the effect of mechanical forces and sensors of these forces on the vascular wall in creating the mechanism of mechanosignaling, as well as the role of the onset of molecular signaling cascades in the pathology of varicose veins.  相似文献   
2.
The nature of the anion–π interaction has been investigated by carrying out ab initio calculations of the complexes of coinage metal anions (Au?, Ag?, and Cu?) with different kinds of π-systems. The binding energies indicate that gold anion has the highest and copper anion has the lowest affinity for interactions with π-systems. Different aspects of the anion–π interaction in these systems have been investigated, including charge-transfer effects (using the Merz–Kollman method), “atoms-in-molecules” (AIM) topological parameters, and interaction energies (using energy decomposition analysis, EDA). Our results indicated that, for most M?···π interactions, the electrostatic term provides the dominant contribution, whereas polarization, charge transfer, and dispersion effects contribute less than 25 % of the interaction. We believe that the present results should lead to a greater understanding of the basis for anion–π interactions of coinage metal anions.  相似文献   
3.
4.
Different morphologies of Mucor hiemalis were induced and used for the production of ethanol and biomass from rice straw through a separate hydrolysis and fermentation process. The yield of enzymatic hydrolysis was improved from 40.4% for the untreated straw to 80–93% by employing sodium hydroxide and concentrated phosphoric acid pretreatments with or without ultrasonication. The best hydrolysis performance was achieved after pretreatment by sodium hydroxide assisted with ultrasonication. The ethanol yields from the hydrolysates were 0.39–0.44 g/g depending on the pretreatment method and the fungus morphology. The yeast‐like form of the fungus showed faster glucose assimilation and slightly higher ethanol yield compared to the other morphologies. The biomass yield of mostly yeast‐like cells was more than the other morphologies (0.202–0.282 g/g glucose). Moreover, the biomass of the yeast‐like cells had more protein content (46.7–52.4 %) compared to filamentous cells (37.7–46.3 %). The cell wall, alkali‐insoluble material (AIM) of the biomass, represented 16.3–20.1% of the biomass. On average, total chitin‐chitosan content of AIM of the biomass of purely filamentous, mostly filamentous, mostly yeast‐like, and purely yeast‐like forms of the fungus was 0.460, 0.373, 0.330, and 0.336 g/g AIM of the biomass, respectively.  相似文献   
5.
Elicitation effect of silver nano particles (AgNPs) and triggering of defence system by production of hydrogen peroxide (H2O2) as a signaling molecule in the regulation of the activity of stress-related enzymes and production of Taxol was evaluated in suspension- cultured hazel cells (Corylus avellana L.). The cells were treated with different concentrations of AgNPs (0, 2.5, 5, and 10 ppm), in their logarithmic growth phase (d7) and were harvested after 1 week. Treatment of hazel cells with AgNPs decreased the viability of the cells. Also the results showed that while the activity of certain radical scavenging enzymes in particular of catalase and peroxidase increased by 2.5 and 5 ppm AgNPs, the activity of superoxide dismutase decreased in these treatments. The highest activity of ascorbate peroxidase was observed in 10 ppm AgNPs treatments. This treatment also showed the highest contents of H2O2 and phenolic compounds, as well as the highest activity of phenylalanine ammonialyase. According to the results, 5 ppm AgNPs was the best concentration for elicitation of hazel cells to produce efficient amounts of H2O2 in order for stimulation of antioxidant defence system, production of Taxol at the highest capacity of the cells, meanwhile reserving their viability.  相似文献   
6.
The Iranian species in the Chrysis pulchella and C. varidens species groups are investigated. Six species are recognized, two of which are described for the first time: Chrysis gamberoonensis Farhad, Rosa and Talebi sp. nov. and Chrysis brunneamarginata Farhad, Rosa and Talebi sp. nov.. Chrysis gamberoonensis Farhad, Rosa and Talebi sp. nov. belongs to the C. pulchella group and is recognizable within this species group by its unique blue body coloration, scattered mesosoma punctures, polished pit row with elongated pits, and a small median tooth on the lateral edge of metasomal tergum 3. Chrysis brunneamarginata Farhad, Rosa and Talebi sp. nov. belongs to the C. varidens group and is recognizable by the usually colorless apical rim of metasomal tergum 3, and the unique shape of the anterior corners of the scutellum which are enlarged, thickened and directed backward covering the axillary trough. Dichotomous keys and distributional data for Iranian species included in these species groups are provided. Chrysis schwarzi Linsenmaier, 1968 is raised to species rank. The number of Iranian Chrysis species and subspecies is raised to 122.www.zoobank.org/urn:lsid:zoobank.org:pub:F419F860-3B90-4679-9A19-2CF5C255AE6B  相似文献   
7.
We used fluorescently labeled phalloidin to examine the subumbrellar musculature of the scyphozoan jellyfish Aurelia aurita in a developmental series from ephyra to adult medusa. In the ephyra, the swim musculature includes a disc‐like sheet of circular muscle, in addition to two radial bands of muscle in each of the eight ephyral arms. The radial muscle bands join with the circular muscle, and both circular and radial muscle act together during each swim contraction. As the ephyra grows into a juvenile medusa, arms tissue is resorbed as the bell tissue grows outward, so eventually, the ephyral arms disappear. During this process, the circular muscle disc also grows outward and the radial muscle bands of the arms also disappear. At this time, a marginal gap appears at the bell margin, which is devoid of circular muscle cells, but has a loose arrangement of radial muscle fibers. This marginal gap is preserved as the medusa grows, and contributes to the floppy nature of the bell margin. Radial distortions in the circular muscle layer involve muscle fibers that run in random directions, with a primarily radial orientation. These are believed to be remnants of the radial muscle of the ephyral arms, and the distortions decrease in number and extent as the medusa grows. Since the mechanics of swimming changes from drag‐based paddling in the ephyra to marginal rowing in the adult medusa, the development of the marginal gap and the presence of radial distortions should be considered in terms of this mechanical transition.  相似文献   
8.
In animal models, STAT3 action in the hypothalamus and liver appears essential for normal body weight and glucose homeostasis in response to insulin. We hypothesized that variation in the STAT3 gene may be associated with body fat and/or insulin resistance in the general population. Five tagging SNPs spanning the STAT3 gene, rs8074524, rs2293152, rs2306580, rs6503695, and rs7211777 were genotyped in 2776 white female twins (mean age, 47.4+/-12.5 yrs) from the St Thomas' United Kingdom Adult Twin Registry (Twins UK). Minor allele frequencies were as follows: rs8074524 (0.19), rs2293152 (0.37), rs2306580 (0.06), rs6503695 (0.35), and rs7211777 (0.34). The minor allele of rs2293152 was associated with higher homeostasis model assessment index of insulin resistance (p=0.013) in the full cohort and confirmed in sib-transmission/disequilibrium test (TDT): (p=0.015; n=60). However, there were no associations with fasting serum insulin or glucose or with obesity variables. Although defective STAT3 action results in obesity and insulin resistance in animal models, we failed to establish any indicative associations with common SNPs in this human study.  相似文献   
9.
Osteoarthritis (OA) is the most common type of arthritis and no longer is considered as an absolute consequence of joint mechanical use (wear and tear); rather recent data demonstrate the pivotal role of inflammatory mediators in the development and progression of this disease. This multifactorial disease results from several environmental and inherited factors. Genetic cannot solely explain all the contribution share of inheritance and, this way, it is speculated that epigenetics can play a role, too. Moreover, environmental factors can induce local epigenetic changes. The epigenetic contribution to OA pathogenesis occurs at all of its levels, DNA methylation, histone modification, microRNA, and long noncoding RNA. In fact, during early phases of OA pathogenesis, environmental factors employ epigenetic mechanisms to provide a positive feedback for the OA-related pathogenic mechanisms and pathways with an ultimate outcome of a well-established clinical OA. These epigenetic changes stay during clinical disease and prevent the body natural healing and regenerative processes to work properly, resulting in an incurable disease condition. In this review article, we aimed to have an overview on the studies performed with regard to understanding the role of epigenetics in the etiopathogenesis of OA and highlighted the importance of such kind of regulatory mechanisms within this context.  相似文献   
10.
Asthma and allergic diseases are inflammatory conditions developed by excessive reaction of the immune system against normally harmless environmental substances. Although acute inflammation is necessary to eradicate the damaging agents, shifting to chronic inflammation can be potentially detrimental. Essential fatty-acids-derived immunoresolvents, namely, lipoxins, resolvins, protectins, and maresins, are anti-inflammatory compounds that are believed to have protective and beneficial effects in inflammatory disorders, including asthma and allergies. Accordingly, impaired biosynthesis and defective production of immunoresolvents could be involved in the development of chronic inflammation. In this review, recent evidence on the anti-inflam]matory effects of immunoresolvents, their enzymatic biosynthesis routes, as well as their receptors are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号