首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  国内免费   10篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  1999年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
2.
史春妹  谢佳君  顾佳音  刘丹  姜广顺 《生态学报》2021,41(12):4685-4693
东北虎个体的自动识别是种群数量评估和制定有效保护策略的重要基础。以东北虎林园和怪坡虎园38 只虎为研究对象,将目标检测方法首次应用到东北虎个体识别研究中,采用多种深度卷积神经网络模型,以实现虎个体的自动识别。首先通过相机在不同角度对 38 只东北虎进行拍摄取样,建立包含13579张图像的虎样本数据集。由于虎的体侧条纹信息不具有对称性,所以运用单次多盒目标检测(Single Shot MultiBox Detector, SSD)方法,对虎的躯干左侧条纹、右侧条纹以及脸部等不同部位图像,进行自动检测并分割提取,极大节省手工截取时间。在检测分割出的左右侧及脸部不同部位图片基础上,运用上、下、左、右平移变换进行数据增强,使图片数目扩大为原来的5 倍。采用LeNet、AlexNet、ZFNet、VGG16、ResNet34共5 种卷积神经网络模型进行个体自动识别。为了提高识别准确率,运用平均值和最大值不同组合方式来优化池化操作,并在全连接层引入概率分别为0.1、0.2、0.3、0.4的丢弃(Dropout)操作防止过拟合。实验表明,目标检测模型耗时较少,截取分割老虎不同部位条纹能达到0.6 s/张,远快于人工截取速度,并且在测试集上准确率能达到97.4%。不同姿态下的目标部位都能正确识别并分割。ResNet34模型的准确率优于其他网络模型,左右侧条纹以及脸部图像识别准确率分别为93.75%、97.01%和 86.28%,右侧条纹识别准确率优于左侧条纹和脸部图像。研究为野生虎自动相机影像的识别提供技术参考。在未来研究中,对东北虎个体影响数据进行扩充,选取更多影像数据进行训练,使网络具有更强的适应性,从而实现更准确的个体识别。  相似文献   
3.
姜广顺  李京芝 《兽类学报》2021,41(5):604-613
目前全球物种正以前所未有的速度灭绝,对野生动物栖息地开展有效的评估与科学的保护是阻止濒危物种走向灭绝,保持其可持续生存与发展的重要前提和手段。本文针对我国的食肉类、有蹄类、灵长类、小型兽类、海洋兽类5个类别的濒危兽类,综述了其栖息地评估与保护研究进展的现状和成果,对相关学术成果进行了归纳与分析,以期为栖息地的科学保护与管理梳理出系统、可供借鉴的研究方法和技术手段,并对其理论和技术的挑战进行了展望,提出了我国濒危兽类栖息地评估和保护研究应走向整体化、定量化、智能化,以及多学科交叉融合应用的“精准化”发展方向,为国家生态建设工程的有效实施提供重要技术支撑。  相似文献   
4.
Abstract

The prevention of infectious diseases is a global challenge where multidrug-resistant bacteria or “superbugs” pose a serious threat to worldwide public health. Microtopographic surfaces have attracted much attention as they represent a biomimetic and nontoxic surface antibacterial strategy to replace biocides. The antimicrobial effect of such natural and biomimetic surface nanostructures involves a physical approach which eradicates bacteria via the structural features of the surfaces without any release of biocides or chemicals. These recent developments present a significant proof-of-concept and a powerful tool in which cellular adhesion and death caused by a physical approach, can be controlled by the micro/nanotopology of such surfaces. This represents an innovative direction of development of clean, effective and nonresistant antimicrobial surfaces. The minireview will cover novel approaches for the construction of nanostructures on surfaces in order to create antimicrobial surface in an environmentally friendly, nontoxic manner.  相似文献   
5.
Human LL-37, a cationic antimicrobial peptide, was recently shown to have antiviral activity against influenza A virus (IAV) strains in vitro and in vivo. In this study we compared the anti-influenza activity of LL-37 with that of several fragments derived from LL-37. We first tested the peptides against a seasonal H3N2 strain and the mouse adapted H1N1 strain, PR-8. The N-terminal fragment, LL-23, had slight neutralizing activity against these strains. In LL-23V9 serine 9 is substituted by valine creating a continuous hydrophobic surface. LL-23V9 has been shown to have increased anti-bacterial activity compared to LL-23 and we now show slightly increased antiviral activity compared to LL-23 as well. The short central fragments, FK-13 and KR-12, which have anti-bacterial activity did not inhibit IAV. In contrast, a longer 20 amino acid central fragment of LL-37 (GI-20) had neutralizing activity similar to LL-37. None of the peptides inhibited viral hemagglutination or neuraminidase activity. We next tested activity of the peptides against a strain of pandemic H1N1 of 2009 (A/California/04/09/H1N1 or “Cal09”). Unexpectedly, LL-37 had markedly reduced activity against Cal09 using several cell types and assays of antiviral activity. A mutant viral strain containing just the hemagglutinin (HA) of 2009 pandemic H1N1 was inhibited by LL-37, suggested that genes other than the HA are involved in the resistance of pH1N1. In contrast, GI-20 did inhibit Cal09. In conclusion, the central helix of LL-37 incorporated in GI-20 appears to be required for optimal antiviral activity. The finding that GI-20 inhibits Cal09 suggests that it may be possible to engineer derivatives of LL-37 with improved antiviral properties.  相似文献   
6.
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance 13C NMR spectroscopy that provides complementary information to 2D 1H NMR. The correlation of 13Cα secondary shifts with both 3D structure and heteronuclear 15N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D 1H-13Cα HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. 1H-13Cα HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.  相似文献   
7.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA>aurein 1.2>the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by (1)H NMR spectroscopy, including structural refinement by natural abundance (13)C(alpha), (13)C(beta), and (15)N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 A below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   
8.
Antimicrobial peptide LL-37 plays an important role in human body's first line of defense against infection. To better understand the mechanism of action, it is critical to elucidate the three-dimensional structure of LL-37 in complex with bacterial membranes. We present a bacterial expression system that allows the incorporation of (15)N and other isotopes into the polypeptide for nuclear magnetic resonance (NMR) analysis. The DNA sequence encoding full-length LL-37 was chemically synthesized and cloned into the pET-32a(+) vector for protein expression in Escherichia coli strain BL21(DE3). The peptide was expressed directly as a His-tagged fusion protein without the inclusion of its precursor sequence. LL-37 was released from the fusion by formic acid cleavage at the AspPro dipeptide bond and separated from the carrier thioredoxin by affinity chromatography and reverse-phase HPLC. The peptide was identified by polyacrylamide gel electrophoresis and further confirmed by mass spectrometry and NMR spectroscopy. Antibacterial activity assays showed that the recombinant LL-37 purified from the bacterial source is as active as that from chemical synthesis. According to the antimicrobial peptide database (), 111 peptides contain a Met residue, but only 5 contain the AspPro pair, indicating a broader application of formic acid than cyanogen bromide in cleaving fusion proteins. The successful application to the expression of the 66-residue cytoplasmic tail of human MUC1 indicates that the system can be applied to other peptides as well.  相似文献   
9.
As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of (13)C,(15)N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional (1)H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and (15)N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.  相似文献   
10.
Antimicrobial peptides are universal host defense membrane-targeting molecules in a variety of life forms. Structure elucidation provides important insight into the mechanism of action. Here we present the three-dimensional structure of a membrane peptide in complex with dioctanoyl phosphatidylglycerol (D8PG) micelles determined by solution NMR spectroscopy. The model peptide, derived from the key antibacterial region of human LL-37, adopted an amphipathic helical structure based on 182 NOE-generated distance restraints and 34 chemical shift-derived angle restraints. Using the same NOESY experiment, it is also possible to delineate in detail the location of this peptide in lipid micelles via one-dimensional slice analysis of the intermolecular NOE cross peaks between the peptide and lipid. Hydrophobic aromatic side chains gave medium to strong NOE cross peaks, backbone amide protons and interfacial arginine side chain HN protons showed weak cross peaks, and arginine side chains on the hydrophilic face yielded no cross peaks with D8PG. Such a peptide-lipid intermolecular NOE pattern indicates a surface location of the amphipathic helix on the lipid micelle. In contrast, the epsilon HN protons of the three arginine side chains showed more or less similar intermolecular NOE cross peaks with lipid acyl chains when the helical structure was disrupted by selective d-amino acid incorporation, providing the basis for the selective toxic effect of the peptide against bacteria but not human cells. The differences in the intermolecular NOE patterns indicate that these peptides interact with model membranes in different mechanisms. Major NMR experiments for detecting protein-lipid NOE cross peaks are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号