首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   26篇
  国内免费   4篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   22篇
  2020年   13篇
  2019年   18篇
  2018年   21篇
  2017年   26篇
  2016年   29篇
  2015年   21篇
  2014年   33篇
  2013年   40篇
  2012年   25篇
  2011年   36篇
  2010年   17篇
  2009年   23篇
  2008年   18篇
  2007年   18篇
  2006年   14篇
  2005年   11篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1982年   1篇
排序方式: 共有459条查询结果,搜索用时 15 毫秒
1.
The interpretation of ΔG (the free energy change for the reaction, globular conformation ? randomly coiled conformation, in the absence of denaturant), in terms of the free energies of transfer of various parts of the protein molecule from water to denaturant solution, is unsatisfactory because the latter are assumed to be identical to the transfer-free energies of similar groups attached to smaller model compounds. We have made empirical adjustments to transfer-free energy theory that make possible linear extrapolation of the free energy of denaturation of a protein from transition region to zero denaturant concentration. The modified theory, used to analyze the denaturation of proteins by guanidine hydrochloride and urea, allowed us to calculate reasonable values for Δα, the average change in accessibility to solvent of the component groups of protein.  相似文献   
2.
The denaturation of proteins by guanidine hydrochloride was studied in the presence of different concentrations of stabilizing salts, namely potassium phosphate, ammonium sulfate, and potassium acetate. The denaturation transition was followed by observing changes in the peptide circular dichroism atpH 7.0 and 25°C. From these results the free energy of stabilization for the process native denatured was determined. It was found that the stabilizing power of the anions increased in the order acetate < sulfate < phosphate, in agreement with the anionic lyotropic series. Ribonuclease A, which is known to have a site that can bind either a phosphate or a sulfate ion, showed a larger stabilization by these anions than that for lysozyme, pepsinogen, and myoglobin.  相似文献   
3.
We demonstrate, using a simple field experiment, that soil warming is sufficient, independent of other cues, to potentially alter the recruitment of Betula pendula seedlings. This study suggests that changing temperature, and correlated changes in edaphic factors, can alter patterns in plant recruitment via differential effects on seed dormancy. Increased soil temperatures (of less than 5 °C) throughout the year led to a significant increase in the number of birch seedlings that emerged from soil samples collected in the spring. No concomitant changes in the emergence of other species was observed. Such temperature induced changes in seedbank dynamics and their subsequent effects on the competitive interactions within a plant community suggest far reaching ecological consequences of current increases in global temperature.  相似文献   
4.
A rapid, sensitive and specific high-performance liquid chromatographic method was developed for the determination of serum levels of retinol in humans. A direct serum injection technique after deproteinisation was used to avoid lengthy pretreatment steps which can result in degradation of retinol during analysis. The column used was CLC-ODS, the mobile phase was acetonitrile-water and detection wavelength was 328 nm. Deterioration in column performance was not observed even after injection of 300 samples. The lower detection limit was 10 μg/l. On analyzing a serum pool six times, a C.V of 0.7% was obtained. The method is quantitative, reproducible, rapid and highly accurate for routine analysis.  相似文献   
5.
Gagui  S.  Meradji  H.  Ghemid  S.  Naeem  S.  Haq  Bakhtiar Ul  Ahmed  R.  Kushwaha  A. K. 《Journal of molecular modeling》2023,29(1):1-13
Journal of Molecular Modeling - The recent advances in the application of machine learning to drug discovery have made it a ‘hot topic’ for research, with hundreds of academic groups...  相似文献   
6.
7.
Cadmium (Cd) in soil–plant system can abridge plant growth by initiating alterations in root zones. Hydroponics and rhizoboxes are useful techniques to monitor plant responses against various natural and/or induced metal stresses. However, soil based studies are considered more appropriate in order to devise efficient food safety and remediation strategies. The present research evaluated the Cd-mediated variations in elemental dynamics of rhizospheric soil together with in planta ionomics and morpho-physio-biochemical traits of two differentially Cd responsive maize cultivars. Cd-sensitive (31P41) and Cd-tolerant (3062) cultivars were grown in pots filled with 0, 20, 40, 60 and 80 µg/kg CdCl2 supplemented soil. The results depicted that the maize cultivars significantly influenced the elemental dynamics of rhizosphere as well as in planta mineral accumulation under applied Cd stress. The uptake and translocation of N, P, K, Ca, Mg, Zn and Fe from rhizosphere and root cell sap was significantly higher in Cd stressed cv. 3062 as compared to cv. 31P41. In sensitive cultivar (31P41), Cd toxicity resulted in significantly prominent reduction of biomass, leaf area, chlorophyll, carotenoids, protein contents as well as catalase activity in comparison to tolerant one (3062). Analysis of tolerance indexes (TIs) validated that cv. 3062 exhibited advantageous growth and efficient Cd tolerance due to elevated proline, phenolics and activity of antioxidative machinery as compared to cv. 31P41. The cv. 3062 exhibited 54% and 37% less Cd bio-concentration (BCF) and translocation factors (TF), respectively in comparison to cv. 31P41 under highest Cd stress regime. Lower BCF and TF designated a higher Cd stabilization by tolerant cultivar (3062) in rhizospheric zone and its potential use in future remediation plans.  相似文献   
8.
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.  相似文献   
9.
A highly sensitive and simple method for identifying sulpiride in pharmaceutical formulations and biological fluids is presented. The method is based on increased chemiluminescence (CL) intensity of a luminol–H2O2 system in response to the addition of Cr (III) under alkaline conditions. The CL intensity of the luminol–H2O2–Cr (III) system was greatly enhanced by the addition of sulpiride and the CL intensity was proportional to the concentration of sulpiride in a sample solution. Various parameters affecting the CL intensity were systematically investigated and optimized for determination of the sulpiride in a sample. Under the optimum conditions, the CL intensity was proportional to the concentration of sulpiride in the range of 0.068–4.0 µg/mL, with a good correlation coefficient of 0.997. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 8.50 × 10‐6 µg/mL and 2.83 × 10‐5 µg/mL, respectively. The method presented here produced good reproducibility with a relative standard deviation (RSD) of 2.70% (n = 7). The effects of common excipients and metal ions were studied for their interference effect. The method was validated statistically through recovery studies and successfully applied for the determination of sulpiride in pure form, pharmaceutical preparations and spiked human plasma samples. The percentage recoveries were found to range from 99.10 to 100.05% for pure form, 98.12 to 100.18% for pharmaceutical preparations and 97.9 to 101.4% for spiked human plasma. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号