首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short-term effects of two levels of air temperature (ambient and warmed) and light (full light and ca. 10% of full light regimes) on the early growth and physiology of Picea asperata and Abies faxoniana seedlings was determined using open-top chambers (OTC). The OTC manipulation increased mean air temperature and soil surface temperature by 0.51°C and 0.34°C under the 60-year plantation, and 0.69°C and 0.41°C under the forest opening, respectively. Warming, with either full-light or low-light conditions, generally caused a significant increase in plant growth, biomass accumulation, and stimulated photosynthetic performance of P. asperata seedlings. However, the warming of A. faxoniana seedlings only significantly increased their growth under low-light conditions, possibly as a result of photoinhibition caused by full light, which may shield and/or impair the effects of warming manipulation, per se, on the growth and physiological performance of A. faxoniana seedlings. In response to warming, P. asperata seedlings allocated relatively more biomass to roots and A. faxoniana more to foliage under similar environments. This might provide A. faxoniana with an adaptive advantage when soil moisture was not limiting and an advantage to P. asperata if substantial moisture stress occurred. Warming markedly increased the efficiency of PSII in terms of the increase in F v/F m and photosynthetic pigment concentrations for the two conifer seedlings, but the effects of warming were generally more pronounced under low-light conditions than under full-light conditions. On balance, this study suggested that warming had a beneficial impact on the early growth and development of conifer seedlings, at least in the short term. Consequently, warming may lead to changes in forest regeneration dynamics and species composition for subalpine coniferous ecosystems under future climate change.  相似文献   

2.
Gmelina arborea Roxb. (Gmelina, Yemane) is a fast growing tree, native from India and considered as a potentially invasive woody plant in West Africa. Mycorrhizal inoculation of seedlings with Glomus intraradices was performed to study (1) the effect on the growth of G. arborea, (2) the impact on the catabolic diversity of soil microbial communities and (3) the influence on the structure of herbaceous plant species communities in microcosms. Treatments consisted of control plants, pre-planting fertilizer application and arbuscular mycorrhizal (AM) inoculation. After 4 months’ culture in autoclaved soil, G. arborea seedlings were either harvested for growth measurement or transferred into containers filled with the same soil but not sterilized. Other containers were kept without G. arborea seedlings. After 12 months’ further culture, effects of fertilizer amendment and AM inoculation on the growth of G. arborea seedlings were recorded. AM colonization was significantly and positively correlated with plant diversity. The substrate-induced respiration response to carboxylic acids was significantly higher in the absence of G. arborea and in the presence of G. intraradices as compared to the other treatments. The influence of AM symbiosis on plant coexistence and on allelopathic processes of invasive plants are discussed.  相似文献   

3.
Although climate change will alter both soil water availability and evaporative demand, our understanding of how future climate conditions will alter tree hydraulic architecture is limited. Here, we demonstrate that growth at elevated temperatures (ambient +5 °C) affects hydraulic traits in seedlings of the deciduous boreal tree species Populus tremuloides, with the strength of the effect varying with the plant organ studied. Temperature altered the partitioning of hydraulic resistance, with greater resistance attributed to stems and less to roots in warm‐grown seedlings (P < 0.02), and a 46% (but marginally significant, P = 0.08) increase in whole plant conductance at elevated temperature. Vulnerability to cavitation was greater in leaves grown at high than at ambient temperatures, but vulnerability in stems was similar between treatments. A soil–plant–atmosphere (SPA) model suggests that these coordinated changes in hydraulic physiology would lead to more frequent drought stress and reduced water‐use efficiency in aspen that develop at warmer temperatures. Tissue‐specific trade‐offs in hydraulic traits in response to high growth temperatures would be difficult to detect when relying solely on whole plant measurements, but may have large‐scale ecological implications for plant water use, carbon cycling and, possibly, plant drought survival.  相似文献   

4.
Soil temperature and flooding effects on two species of citrus   总被引:2,自引:0,他引:2  
Summary Rough lemon (Citrus jambhiri Lush.) and sour orange (C. aurantium L.) seedlings were grown at constant soil temperatures of 16, 24, and 33 C for 3 months. Shoot and root growth of rough lemon was greatest at 33 C while growth of sour orange was greatest at 24 C. There were no significant effects of soil temperature on shoot: root ratio, leaf water potential or stomatal conductance. The hydraulic conductivity of intact root systems of both species was highest when seedlings were grown at 16 C. Thus, acclimation through greater root conductivity at low soil temperature may have compensated for decreased root growth at 16 C and negated effects of soil temperature on plant water relations. Half the plants growing at each soil temperature were subsequently flooded. Within 1 week, the soil redox potential (Eh) dropped below zero mV, reaching a minimum Eh of –250mV after 3 weeks of flooded conditions. Flooded plants exhibited lower root conductivity, a cessation of shoot growth, lower leaf water potentials, lower stomatal conductances, and visual sloughing of fibrous roots. Decreases in root conductivity in response to flooding were large enough to account for the observed decreases in stomatal conductance.Florida Agricultural Experiment Stations Journal Series No. 4080.  相似文献   

5.
The effect of earthworms and snails in a simple plant community   总被引:3,自引:0,他引:3  
Snails and earthworms affected the dynamics of a simple, three-species plant community, in the Ecotron controlled environment facility. Earthworms enhanced the establishment, growth and cover of the legume Trifolium dubium, both via the soil and interactions with other plant species. Worms increased soil phosphates, increased root nodulation in T. dubium, and enabled T. dubium seedlings to establish in the presence of grass (Poa annua) litter, by increasing soil heterogeneity. Worms also buried the seeds of Poa annua and Senecio vulgaris, reducing the germination of new seedlings. Snails reduced nitrogen-fixing Trifolium dubium and increased cover of plant litter, thereby reducing ammonia-nitrogen concentrations in the soil. These effects and their interactions demonstrate that the detritivore food chain, and earthworms in particular, cannot be ignored if we are to understand the spatial and temporal dynamics of plant communities.  相似文献   

6.
Kennedy PG  Sousa WP 《Oecologia》2006,148(3):464-474
Competition and facilitation are both considered major factors affecting the structure of plant assemblages, yet few studies have quantified positive, negative, and net effects simultaneously. In this study, we investigated the positive, negative, and net effects of tree saplings on the encroachment of two tree species, Douglas fir (Pseudotsuga menziesii) and tanoak (Lithocarpus densiflora), into a coastal California grassland. The study involved three components: sampling the spatial distributions of P. menziesii and L. densiflora in the grasslands, a field experiment examining seedling survival in different grassland environments, and a greenhouse experiment examining the effects of soil moisture on early seedling performance. The field experiment was conducted over a 2-year period, using Pseudotsuga in 2002 and both species in 2003. Seedlings were separated into four treatment groups: those planted in open grassland, in shaded grassland, under artificial (plastic) conifer saplings, and under natural Pseudotsuga saplings. Air temperature, relative humidity, soil moisture, incident radiation levels and fog water inputs were measured for each treatment group in 2003. In the greenhouse experiment, Pseudotsuga and Lithocarpus seedlings were grown for 13 weeks in watering treatments simulating the summer soil moisture conditions of the open grasslands and under Pseudotsuga saplings. Surveys of naturally established seedlings found that Lithocarpus occurred only under Pseudotsuga saplings, while most Pseudotsuga seedlings were located near but not directly under conspecific saplings. In the field experiment, positive effects of tree saplings were much larger than negative effects, resulting in strong net facilitation of seedling establishment. Survival for both species was always higher under the plastic and live trees than in the open or shade plots. The primary mechanism facilitating seedling survival appeared to be increased soil moisture caused by input of fog precipitation coupled with reduced microsite evaporation. The greenhouse experiment further showed that soil moisture strongly affected seedling performance, with both species having much higher photosynthetic rates in the higher moisture treatment. In the lower moisture treatment, Pseudotsuga seedlings had higher photosynthetic rates and stomatal conductance than Lithocarpus, suggesting they may be able to better tolerate the environmental conditions found in the open grasslands. Our combined results suggest that rate and patterning of woody plant encroachment can be strongly influenced by facilitation and that fog precipitation may play a key role in plant interactions.  相似文献   

7.
The effects of bioturbation by the mud fiddler crab (Uca pugnax) on salt marsh seedling recruitment were investigated experimentally in this study. Burrowing and foraging activity caused a large amount of soil disturbance, which in turn negatively impacted the establishment of seedlings. Either seeds did not germinate or seedlings were uprooted or buried. Although the majority of the published literature suggests a positive influence of Uca spp. on salt marsh plant growth, at high densities they have the potential to hinder the re-colonization of areas made bare by previous disturbance. This study illustrates the perhaps underappreciated role that bioturbators can have on vegetation patterns in salt marshes and other ecosystems.  相似文献   

8.
O. Osonubi  W. J. Davies 《Oecologia》1978,32(3):323-332
Summary Young seedlings of English Oak, Quercus robur L., and Silver Birch, Betula verrucosa Ehrl., were subjected to a number of consecutive periods during which water was withheld. During one 14-day period leaf-and soil-water potentials and leaf- and root-solute potentials of two groups of plants were sampled at noon of each day. One group of plants was watered every day while water was withheld from the other group. Solute accumulation in roots and leaves of oak seedlings subjected to water stress resulted in maintenance of turgor and high leaf conductance as the soil dried. In birch seedlings turgor was only maintained by stomatal closure at high soil water potential.Fourteen consecutive water stress cycles greatly reduced the growth of birch seedlings but had little effect on oak seedlings other than to alter root morphology. Water stress treatment resulted in the production of long thin roots in this plant. Stomatal behaviour in oak and birch seedlings during the 14-week stress period was consistent with observed changes in leaf water and solute potentials. Daily solute accumulation in oak leaves was presumably responsible for the maintenance of plant growth as water potentials fell.  相似文献   

9.
林线树种幼苗的生长紧密关系着高山林线的形成。通过室内发芽实验测定了岷江冷杉种子萌发能力。2015年春,在川西巴郎山岷江冷杉林线之上的高山林线交错带,通过播种处理(播种和不播种),研究了不同植物群落类型(灌木和草地群落)和围栏处理(围栏和不围栏)对岷江冷杉幼苗成活率的影响,以期为进一步探讨高山林线形成机制提供科学参考。结果表明:(1)岷江冷杉室内发芽率31.4%,成活率随时间下降。(2)灌木群落的全年日平均空气温湿度显著高于草本群落,而两群落的全年日平均土壤温度无显著差异。(3)未播种样地没有发现岷江冷杉幼苗,说明林线交错带缺乏岷江冷杉种子。(4)与不围栏样地相比,围栏封育分别显著提高了岷江冷杉幼苗成活率2.0%(2015年)和2.2%(2016年);与灌木群落相比,草本群落中岷江冷杉幼苗成活率显著提高0.8%(2015年)和1.2%(2016年),说明灌木对林线交错带幼苗更新具有更强的竞争作用。围栏处理下,草本群落中岷江冷杉幼苗成活率显著高于灌木群落;不围栏处理下,草本群落中岷江冷杉幼苗成活率显著低于灌木群落,2017年在不围栏样地没有幼苗存活,说明动物干扰对林线交错带森林更新有阻碍作用。研究表明,高山林线交错带森林更新,受种子、植物竞争和动物干扰(例如,放牧)等多方面因素的共同影响,可以通过播种、植物剔除(去除竞争)和围栏等促进幼苗更新和成活。  相似文献   

10.
Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.  相似文献   

11.
We evaluated effects of soil texture and disturbance size on the successional dynamics of a semiarid grassland dominated by the perennial bunchgrass, Bouteloua gracilis (H.B.K.) Lag. ex Griffiths. A spatially-explicit gap dynamics simulation model was used to evaluate recovery patterns. The model simulates establishment, growth, and mortality of individual plants on an array of small plots through time at an annual time step. Each simulated disturbance consisted of a grid of plots of the same soil texture interconnected by processes associated with dispersal of B. gracilis seeds. Soil texture was incorporated into the model as effects on seed germination, seedling establishment, and subsequent growth of B. gracilis. Five soil texture classes and five disturbance sizes were simulated.Soil texture was more important to recovery of B. gracilis than either size of a disturbance or location of plots within a disturbance. Constraints on recruitment of seedlings had a greater effect on recovery than constraints associated with plant growth. Fastest recovery occurred on soils with the largest silt content, the variable that affects seedling establishment. Disturbances with slowest recovery were on soils with low silt contents, and either high or low water-holding capacity, the variable that affects plant growth. Biomass and recovery decreased as disturbance size increased, and as distance from a disturbed plot to the edge of the disturbance increased. In most cases, important interactions between soil texture and disturbance size on recovery were not found.  相似文献   

12.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

13.
The effect of oil spills on the recruitment of freshwater tidal wetland species was determined using soil seed bank samples collected in early March from two New Jersey Delaware River marshes. Samples were exposed to simulated tidal cycles 0 (2 days), 2 and 4 wk after soil was collected; 0 wk samples were treated before germination began. Oil treatment significantly reduced survival to I May (end of study) of Acnida cannabina and Bidens laevis, the dominant species, as well as number of species per sample and height of B. laevis. Total perennial seedlings, present in low numbers, also showed significant reduction with treatment. However, during the course of the study, Peltandra virginica recruitment and survival were not reduced by oil treatment and recruitment of Sagittaria latifolia appeared enhanced. There was no consistent pattern regarding which treatment time produced the greatest effect. Interactions (site, treatment, time) were generally not significant. Because these tidal freshwater wetlands and seed banks are dominated by annuals, reduction in seedling numbers and growth could substantially alter vegetation patterns. Timing of oil spills would be important, but impact would depend on species composition of the seed bank and colonizing vegetation, dispersal of seeds into the site, and germination requirements.  相似文献   

14.
Fire, which is the dominant disturbance in the boreal forest, creates substantial heterogeneity in soil burn severity at patch and landscape scales. We present results from five field experiments in Yukon Territory, Canada, and Alaska, USA that document the effects of soil burn severity on the germination and establishment of four common boreal trees: Picea glauca, Picea mariana, Pinus contorta subsp. latifolia, and Populus tremuloides. Burn severity had strong positive effects on seed germination and net seedling establishment after 3 years. Growth of transplanted seedlings was also significantly higher on severely burned soils. Our data and a synthesis of the literature indicated a consistent, steep decline in conifer establishment on organic soils at depths greater than 2.5 cm. A meta-analysis of seedling responses found no difference in the magnitude of severity effects on germination versus net establishment. There were, however, significant differences in establishment but not germination responses among deciduous trees, spruce, and pine, suggesting that small-seeded species experience greater mortality on lightly burned, organic soils than large-seeded species. Together, our analyses indicate that variations in burn severity can influence multiple aspects of forest stand structure, by affecting the density and composition of tree seedlings that establish after fire. These effects are predicted to be most important in moderately-drained forest stands, where a high potential variability in soil burn severity is coupled with strong severity effects on tree recruitment.  相似文献   

15.
Soil transfers from an intermediate successional site and a mature forest site were applied to Populus balsamifera L. cuttings and Alnus crispa (Ait.) Pursh seedlings placed on an abandoned mined site in south central Alaska to improve plant establishment. Mycorrhizal fungi in the soil transfers from the two successional stages were hypothesized to have different effects on plant species that colonize disturbed sites at different times or on different substrates. The site consisted of coarse, dry, low-nutrient spoils and was naturally colonized by scattered P. balsamifera but not A. crispa, although seed sources for both were adjacent to the site. Physical dimensions of the transplanted seedlings and cuttings were measured at the beginning and end of each growing season. Selected plants were harvested at the end of the 2-year study and examined for mycorrhizal formation, current growth, and leaf tissue nutrient concentrations. Both plant species were taller when treated with the soil transfers from the mature forest than with soils from the intermediate site although the increase for A. crispa was greater. Physical dimensions, current growth, and nutrient concentrations were greater when A. crispa was treated with the mature soil transfer compared with the intermediate soil transfer. Mycorrhizae which infected Alnus were predominantly a brown woody type, while other types accounted for greater relative mycorrhizal infection percentage on Populus. Insufficient quantities of mycorrhizal inoculum of suitable species, as well as low moisture and low nutrient conditions, may be factors limiting A. crispa colonization on primary disturbed sites in south central Alaska.  相似文献   

16.
Facilitation is known to be an important process structuring natural plant communities. However, much less is known about its role in facilitating the invasion of ecosystems by non-native plant species. In this study we evaluated the effects of invasive (Acer platanoides) and native (Pseudotsuga menziesii) forest types on the performance of A. platanoides seedlings, and related these effects to structural and functional properties associated with the two forest types, in a native P. menziesii forest that is being invaded by A. platanoides. Acer platanoidesseedlings had higher densities, recruitment, and survival, and experienced less photoinhibition and water stress when beneath conspecific canopies than in the adjacent P. menziesii forest. Soil moisture and canopy cover were greater in the invaded patch than the native forest. There was no difference in soil fertility or understory light levels between locations. These demographic (i.e. seedling survival), physiological, and environmental differences appeared to be due to the effects of A. platanoides and P. menziesii trees. Thus, Acer trees appear to produce a more mesic environment by modifying the structure and phenology of the forest canopy and by altering the timing of transpirational water loss relative to P. menziesii. Environmental modification by invaders that lead to positive effects on conspecifics may help us to understand the dramatic success and lag periods of some invasive species  相似文献   

17.
段桂芳  单立山  李毅  张正中  张荣 《生态学报》2016,36(20):6457-6464
以西北荒漠生态系统典型植物红砂(Reaumuria soongorica)一年生幼苗为研究对象,利用人工遮雨装置,设置3个降水量梯度(W-、W、W+)和2个降水间隔时间梯度(T、T+)进行模拟试验,研究了不同降水格局下红砂幼苗生长、生物量积累和分配的变化特征。结果表明:(1)降水量增加30%,幼苗株高和基径分别平均增加22.0%和28.0%,延长降水间隔时间其作用更显著,分别平均增加24.57%和32.98%(P0.05);(2)在延长降水间隔时间的同时增加降水量,幼苗地上、地下和总生物量分别显著增加了241.57%、223.95%和236.72%(P0.05),幼苗地上部分的生长优于地下部分;(3)与对照相比,降水量减少30%,幼苗根长平均增加21.0%,根冠比平均显著增加53.73%(P0.05),而各部分生物量差异不显著。  相似文献   

18.
Abstract. Germination of semi-arid Quercus is strongly correlated with the rainy season. However, the timing and amount of summer precipitation in the southwestern United States is extremely variable. Ongoing and impending changes in global and regional climates are likely to increase this variability. Specifically, anthropogenically induced changes in general circulation patterns may alter the seasonal distribution of precipitation in a directional manner. In addition to climatic variability, the inter- and intra-annual variability of Quercus emoryi Torr. (Emory oak) acorn maturation also is high. Therefore, in light of existing climatic variability and potential future climate change, we conducted a greenhouse experiment to investigate the effects of acorn maturation date and the timing of the onset of the ‘monsoon’ on emergence of Q. emoryi seedlings. Acorns were collected at weekly intervals in July of 1995 and 1996, planted in a greenhouse, and subjected to different watering treatments. Watering treatments were (1) acorns watered the same day as planting; (2) acorns watered two weeks after planting; (3) acorns watered four weeks after planting. Emergence in 1995 was significantly greater in the last week of acorn maturation and decreased significantly as time to the onset of the ‘monsoon’ increased. Emergence in 1996 was very low, presumably because of soil moisture contents that were lower than those observed in 1995. The dependence of Q. emoryi on water for emergence has profound implications for Q. emoryi recruitment in the face of current climatic variability and future climate change. Summers with a delayed ‘monsoon’ and decreased soil moisture may severely constrain recruitment of this woody plant.  相似文献   

19.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

20.
Summary We studied the effects of density on the dynamics of seedling growth and canopy microclimate within experimental stands composed of Datura ferox L. seedlings grown in individual pots. Interception of photosynthetically active radiation (PAR) by seedlings was evaluated either indirectly, by measuring leaf area, proportion of leaf area shaded by neighbouring individuals and laminar orientation with respect to sunlight, or directly, by measuring PAR at individual leaves at their natural angle of display. An integrating cylinder, with a geometry approximating that of a stem, was used within the canopies to measure the red:far-red (R:FR) ratio of the light flux from all compass points parallel to the soil surface. Seedlings responded rapidly (i.e. 1–2 weeks) to increased density by producing longer internodes and partitioning more dry matter to stems relative to leaves. These responses were observed before either PAR interception of growth rate were reduced by the presence of neighbours. Conversely, morphogenetic adjustment was preceded by a consistent effect of plant density on the R:FR ratio of the light received by the integrating cylinder. Air and soil temperature were not affected by density in these experiments. Differences in wind velocity within the canopy associated with plant density were avoided by the experimental procedure. The results support the idea that the drop in R:FR ratio of the light flux parallel to the ground — e.g. reflected sunlight — is an early signal that allows rapid adjustment of plant form to changes in canopy structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号