首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1977年   1篇
排序方式: 共有35条查询结果,搜索用时 547 毫秒
1.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
2.
PDC-109 is the major protein of bovine seminal plasma. It binds to the bovine sperm surface at ejaculation and modulates sperm capacitation. PDC-109 displays phosphorylcholine- and heparin-binding activities which are thought to account for its sperm surface coating and glycosaminoglycan-induced sperm capacitating activities, respectively. We have characterized the interaction of isolated PDC-109 with membranes of phospholipid vesicles using a biophysical approach. Our results show that PDC-109 interacts not only with the solvent-exposed phosphorylcholine head group but also with the hydrophobic core of liposomes. Binding of PDC-109 to membranes is a very rapid, biphasic process with half times of less than one second. Maximal binding of PDC-109 to small unilamellar vesicles was achieved with a stoichiometric ratio of 10–11 phosphatidylcholine molecules/PDC-109 molecule. Incorporation of phosphatidylethanolamine or phosphatidylserine into phosphatidylcholine vesicles reduced the binding of PDC-109, suggesting that both the density of phosphorylcholine groups and the surface charge determine the interaction of the seminal plasma protein with the surface of the membrane. Electron spin resonance measurements showed that binding of PDC-109 to phosphatidylcholine vesicles caused a rigidification of the membrane. The relevance of the data for describing the role of PDC-109 in the modulation of sperm capacitation is discussed. Received: 16 June 1997 / Accepted: 10 September 1997  相似文献   
3.
The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented. Astrid Tannert and Anke Kurz have contributed equally to this work. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   
4.
The requirement of DAG (diacylglycerol) to recruit PKD (protein kinase D) to the TGN (trans-Golgi network) for the targeting of transport carriers to the cell surface, has led us to a search for new components involved in this regulatory pathway. Previous findings reveal that the heterotrimeric Gbetagamma (GTP-binding protein betagamma subunits) act as PKD activators, leading to fission of transport vesicles at the TGN. We have recently shown that PKCeta (protein kinase Ceta) functions as an intermediate member in the vesicle generating pathway. DAG is capable of activating this kinase at the TGN, and at the same time is able to recruit PKD to this organelle in order to interact with PKCeta, allowing phosphorylation of PKD's activation loop. The most qualified candidates for the production of DAG at the TGN are PI-PLCs (phosphatidylinositol-specific phospholipases C), since some members of this family can be directly activated by Gbetagamma, utilizing PtdIns(4,5)P2 as a substrate, to produce the second messengers DAG and InsP3. In the present study we show that betagamma-dependent Golgi fragmentation, PKD1 activation and TGN to plasma membrane transport were affected by a specific PI-PLC inhibitor, U73122 [1-(6-{[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. In addition, a recently described PI-PLC activator, m-3M3FBS [2,4,6-trimethyl-N-(m-3-trifluoromethylphenyl)benzenesulfonamide], induced vesiculation of the Golgi apparatus as well as PKD1 phosphorylation at its activation loop. Finally, using siRNA (small interfering RNA) to block several PI-PLCs, we were able to identify PLCbeta3 as the sole member of this family involved in the regulation of the formation of transport carriers at the TGN. In conclusion, we demonstrate that fission of transport carriers at the TGN is dependent on PI-PLCs, specifically PLCbeta3, which is necessary to activate PKCeta and PKD in that Golgi compartment, via DAG production.  相似文献   
5.
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is a highly potent granulocyte chemoattractant that acts through a selective G-protein coupled receptor. It is formed by oxidation of the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Although leukocytes and platelets display high microsomal 5-HEDH activity, unstimulated intact cells do not convert 5-HETE to appreciable amounts of 5-oxo-ETE. To attempt to resolve this dilemma we explored the possibility that 5-oxo-ETE synthesis could be enhanced by oxidative stress. We found that hydrogen peroxide and t-butyl hydroperoxide strongly stimulate 5-oxo-ETE formation by U937 monocytic cells. This was dependent on the GSH redox cycle, as it was blocked by depletion of GSH or inhibition of glutathione reductase and mimicked by oxidation of GSH to GSSG by diamide. Glucose inhibited the response to H2O2 through its metabolism by the pentose phosphate pathway, as its effect was reversed by the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. 5-Oxo-ETE synthesis was also strongly stimulated by hydroperoxides in blood monocytes, lymphocytes, and platelets, but not neutrophils. Unlike monocytic cells, lymphocytes and platelets were resistant to the inhibitory effects of glucose. 5-Oxo-ETE synthesis following incubation of peripheral blood mononuclear cells with arachidonic acid and calcium ionophore was also strongly enhanced by t-butyl hydroperoxide. Oxidative stress could act by depleting NADPH, resulting in the formation NADP+, the cofactor for 5-HEDH. This is opposed by the pentose phosphate pathway, which converts NADP+ back to NADPH. Oxidative stress could be an important mechanism for stimulating 5-oxo-ETE production in inflammation, promoting further infiltration of granulocytes into inflammatory sites.  相似文献   
6.

Background  

Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP.  相似文献   
7.
8.
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.  相似文献   
9.
Regeneration and reestablishment of synaptic connections is an important topic in neurobiological research. In the present study, the regeneration of auditory afferents and the accompanying effects in the central nervous system are investigated in nymphs and adults of the bush cricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). In all animals in which the tympanal nerve is crushed, neuronal tracing shows a regrowth of the afferents into the prothoracic ganglion. This regeneration is seen in both adult and nymphal stages and starts 10–15 days after nerve crushing. Physiological recordings from the leg nerve indicate a recovery of tympanal fibres and a formation of functional connections to interneurones in the same time range. Electrophysiological recordings from the neck connective suggest additional contralateral sprouting of interneurones and the formation of aberrant connections. The regeneration processes of the tympanal nerve in nymphal stages and adults appear to be similar.  相似文献   
10.
Summary Xylose reductase from the xylose-fermenting yeastPichia stipitis was purified to electrophoretic homogeneity via ion-exchange, gel and affinity chromatography. At physiological pH values the thermodynamic equilibrium constant was determined to be 0.575x1010 (l·mol-1). Product inhibiton studies are reported which clearly show that the kinetic mechanism of the xylose reductase is ordered-bi-bi with isomerisation of a stable enzyme form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号