首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
  2021年   1篇
  2007年   2篇
  2005年   1篇
  2001年   2篇
  1974年   1篇
  1972年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有11条查询结果,搜索用时 140 毫秒
1.
An important feature of chemokines is their ability to bind to the glycosaminoglycan (GAG) side chains of proteoglycans, predominately heparin and heparan sulfate. To date, all chemokines tested bind to immobilized heparin in vitro, as well as cell surface heparan sulfate in vitro and in vivo. These interactions play an important role in modulating the action of chemokines by facilitating the formation of stable chemokine gradients within the vascular endothelium and directing leukocyte migration, by protecting chemokines from proteolysis, by inducing chemokine oligomerization, and by facilitating transcytosis. Despite the importance of eotaxin in eosinophil differentiation and recruitment being well established, little is known about the interaction between eotaxin and GAGs and the functional consequences of such an interaction. Here we report that eotaxin binds selectively to immobilized heparin with high affinity (K(d) = 1.23 x 10(-8) M), but not to heparan sulfate or a range of other GAGs. The interaction of eotaxin with heparin does not promote eotaxin oligomerization but protects eotaxin from proteolysis directly by plasmin and indirectly by cathepsin G and elastase. In vivo, co-administration of eotaxin and heparin is able to significantly enhance eotaxin-mediated eosinophil recruitment in a mouse air-pouch model. Furthermore, when heparin is co-administered with eotaxin at a concentration that does not normally result in eosinophil infiltration, eosinophil recruitment occurs. In contrast, heparin does not enhance eotaxin-mediated eosinophil chemotaxis in vitro, suggesting protease protection or haptotactic gradient formation as the mechanism by which heparin enhances eotaxin action in vivo. These results suggest a role for mast cell-derived heparin in the recruitment of eosinophils, reinforcing Th2 polarization of inflammatory responses.  相似文献   
2.
The role of the immune system in the surveillance of transformed cells has seen a resurgence of interest in the last 10 years, with a substantial body of data in mice and humans supporting a role for the immune system in host protection from tumor development and in shaping tumor immunogenicity. A number of earlier studies have demonstrated that eosinophils, when recruited into tumors, can very effectively eradicate transplantable tumors. In this study, we investigated whether eosinophils also play a role in tumor immune surveillance by determining the incidence of methylcholanthrene (MCA)-induced fibrosarcomas in IL-5 transgenic mice that have greatly enhanced levels of circulating eosinophils, CCL11 (eotaxin-1)-deficient mice that lack a key chemokine that recruits eosinophils into tissues, and the eosinophil-deficient mouse strains, IL-5/CCL11(-/-) and DeltadblGATA. It was found that MCA-induced tumor incidence and growth were significantly attenuated in IL-5 transgenic mice of both the BALB/c and C57BL/6 backgrounds. Histological examination revealed that the protective effect of IL-5 was associated with massively enhanced numbers of eosinophils within and surrounding tumors. Conversely, there was a higher tumor incidence in CCL11(-/-) BALB/c mice, which was associated with a reduced eosinophil influx into tumors. This correlation was confirmed in the eosinophil-deficient IL-5/CCL11(-/-) and DeltadblGATA mouse strains, where tumor incidence was greatly increased in the total absence of eosinophils. In addition, subsequent in vitro studies found that eosinophils could directly kill MCA-induced fibrosarcoma cells. Collectively, our data support a potential role for the eosinophil as an effector cell in tumor immune surveillance.  相似文献   
3.
4.
Oligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2′-O-methyl (2′OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2′OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9. Through a screen of 80 2′OMe ASOs and sequence mutants, we characterized key features within the 20-mer ASOs regulating cGAS and TLR9 inhibition, and identified a highly potent cGAS inhibitor. Importantly, we show that the features of ASOs inhibiting TLR9 differ from those inhibiting cGAS, with only a few sequences inhibiting both pathways. Together with our previous studies, our work reveals a complex pattern of immunomodulation where 95% of the ASOs tested inhibited at least one of TLR7, TLR9 or cGAS by ≥30%, which may confound interpretation of their in vivo functions. Our studies constitute the broadest analysis of the immunomodulatory effect of 2′OMe ASOs on nucleic acid sensing to date and will support refinement of their therapeutic development.  相似文献   
5.
6.
7.
8.
In recent times, new members of the insulin/relaxin peptidesuperfamily have been identified by both differential cloningstrategies as well as bioinformatic searching of the ESTdatabases. We have used the public and Celera Genomicsdatabases to search for novel members of this peptide family.No new members of the insulin/relaxin family were identifiedalthough the human (H3) and mouse (M3) relaxin 3 genes that werecently discovered in the Celera Genomics database wereidentified in the public database. We were able to confirmthat there are no mouse equivalents of human INSL4 or humangene 1 relaxin. Hence, as the two human relaxin genes (H1 andH2) are localized together with INSL6 and INSL4 on chromosome9 it is probable that INSL4 and H1 relaxin are the result of agene duplication which did not occur in non-primates. Thediscovery of a full relaxin 3 sequences in a new Zebrafishbrain EST library, which retains a high homology in both A andB chain peptide sequence with the H3 peptide, indicate thatthis novel peptide has important conserved functions.  相似文献   
9.
A supernatant fraction, free of plastids, was prepared by centrifugation from Euglena gracilis and used to ascertain whether or not the inhibition of carbon dioxide fixation by oxygen, known as the Warburg effect, is entirely independent of the light-driven phase of photosynthesis. This fraction exhibited in the dark the main features of the Warburg effect; namely, an inverse relationship between the degree of inhibition by oxygen and bicarbonate concentration, reversibility of the inhibition when the oxygen partial pressure is lowered and an increase in the proportion of 2-carbon compounds. It is proposed, therefore, that the inhibition by oxygen is manifest in the photosynthetic carbon reduction cycle and is independent of photosynthetic electron transport and phosphorylation.  相似文献   
10.
Ellyard PW  Gibbs M 《Plant physiology》1969,44(8):1115-1121
The inhibition of photosynthetic CO2 fixation by O2, commonly referred to as the Warburg effect, was examined in isolated intact spinach (Spinacia oleracea) chloroplasts. The major characteristics of this effect in isolated chloroplasts are rapid reversibility when O2 is replaced by N2, an increased inhibition by O2 at low concentrations of CO2 and a decreased effect of O2 with increased concentrations of CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号