首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1997年   5篇
  1995年   2篇
  1990年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
Summary We have examined the effect of crude cardiac tissue extracts as well as that of several growth factors and triiodothyronin (T3) on DNA synthesis of cardiac myocytes in culture. Extracts from embryonic and adult cardiac tissue stimulated DNA synthesis of myocytes. Atrial myocytes exhibited overall higher degree of stimulation than their ventricular counterparts and extracts from adult atrial tissue had the highest apparent mitogenic activity for atrial myocytes. We have shown that adult heart contains basic fibroblast growth factor (bFGF), especially in the atria [1]. Transforming growth factor (TGF) and insulin-like growth factors (IGFs) are also accumulated in cardiac tissues [2, 3]. We found that bFGF and the IGFs stimulate myocyte cell proliferation and DNA synthesis. These factors also stimulate cardiac non-muscle proliferation, especially in the presence of serum. TGF inhibited proliferation and DNA synthesis and cancelled the effect of bFGF or IGFs on the myocytes. T3 also diminished the bFGF-induced mitogenic stimulation of cardiomyocytes. Our data suggest that these factors may be involved in the regulation of cardiomyocyte proliferation in vivo.Abbreviations bFGF basic Fibroblast Growth Factor - BSA Bovine Serum Albumin - DM Defined Medium - Fes Fetal calf serum - FITC Fluorescein - IGF Insulin-like Growth Factor - IgG Immunoglobulin - LI Labeling Index - PBS Phosphate Buffered Saline - T3 Triiodothyronine - TGF Transforming Growth Factor   相似文献   
2.
To examine whether basic fibroblast growth factor (bFGF) administered to the heart by perfusion can improve cardiac resistance to injury we employed an isolated rat heart model of ischemia-reperfusion injury and determined the extent of functional recovery in bFGF-treated and control hearts. Global ischemia was simulated by interruption of flow for 60 min. Recovery of developed force of contraction (DF), recorded after reestablishment of flow for 30 min, reached 63.8±1.5% and 96.5±3.5% of preischemic levels in control and bFGF-treated hearts (10 g/heart), respectively, indicating that bFGF induced significantly improved recovery of mechanical function. Recoveries of the rates of contraction or relaxation were also significantly improved in bFGF-treated hearts. Extent of myocardial injury, assessed by determination of phosphocreatine kinase in the effluent, was reduced as a result of bFGF treatment. As a first step towards understanding the mechanism and direct cellular target(s) of bFGF-induced cardioprotection, we investigated its fate after perfusion. Perfusion of 10 g bFGF/heart resulted in a 4-fold increase in bFGF associated with the heart compared to control levels, as estimated by biochemical fractionation and immunoblotting. Immunofluorescent staining of the bFGF-perfused hearts revealed intense anti-bFGF staining in association with blood vessels as well as the periphery of cardiomyocytes, suggesting that the latter may be a target for direct bFGF action. In conclusion, our findings of bFGF-induced increases in cardiac resistance to, and improved functional recovery from, ischemia-reperfusion injury indicate that bFGF may have clinical applications in the treatment of ischemic heart disease.  相似文献   
3.

Background

Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart.

Methodology/Principal Findings

We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin.

Conclusions/Significance

We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling.  相似文献   
4.
Novel hybrids of lipoic acid and trolox connected through triamine spacers as well as analogues in which the lipoic acid was attached at different positions of the chroman moiety of vitamin E through an amide bond, were synthesized and exhibited strong inhibition of the microsomal lipid peroxidation. Moreover, the new molecules, at 1 microM concentration, reduced reperfusion arrhythmias and MDA content on isolated rat heart preparations, with the 2- and 5-subtituted chromans possessing the better cardioprotective activity.  相似文献   
5.
Human angiogenin is a 14-kDa plasma protein with angiogenic and ribonucleolytic activities. Angiogenin binds specifically to aortic smooth muscle cells, activates second messenger pathways, and inhibits their proliferation. Human and bovine aortic smooth muscle cells were used to study the internalization and intracellular fate of human angiogenin at 37 degrees C. Using a specific antibody against angiogenin, we found that the internalized native protein was localized in the perinuclear region at 30 min and then dispersed throughout the cytoplasm. In conditions favoring receptor-mediated endocytosis, internalization of iodinated angiogenin showed a first peak at 5 min and then further increased for up to 24 h. The half-life of the molecule, calculated as 12 h in chase experiments, could contribute to its intracellular accumulation. In cell extracts, in addition to the 14-kDa protein, a 8.7-kDa fragment was observed at 24 h, and three fragments with molecular mass of 10.5, 8.7, and 6. 1 kDa were detected at 48 h. Our data point to a specific internalization and processing of human angiogenin by aortic smooth muscle cells.  相似文献   
6.
7.
Fibroblast growth factor 2 (FGF-2) is produced as CUG-initiated, 22-34 kDa or AUG-initiated 18 kDa isoforms (hi- and lo-FGF-2, respectively), with potentially distinct functions. We report that expression of hi-FGF-2 in HEK293 cells elicited chromatin compaction preceding cell death with apoptotic features. Nuclear localization of the intact protein was required as expression of a non-nuclear hi-FGF-2 mutant failed to elicit chromatin compaction. Equally ineffective, despite nuclear localization, was the over-expression of the 18 kDa core sequence (lo-FGF-2). Chromatin compaction by hi-FGF-2 was accompanied by increased cytosolic cytochrome C, and was attenuated either by over-expression of Bcl-2 or by a peptide inhibitor of the pro-apoptotic protein Bax. In addition hi-FGF-2 elicited sustained activation of total and nuclear extracellular signal regulated kinase (ERK1/2) by an intracrine route, as it was not prevented by neutralizing anti-FGF-2 antibodies. Inhibition of the ERK1/2 activating pathway by dominant negative upstream activating kinase, or by PD 98059, prevented chromatin compaction by hi-FGF-2. ERK1/2 activation was not affected by the Bax-inhibiting peptide suggesting that it occurred upstream of mitochondrial involvement. We conclude that the hi-FGF-2-induced chromatin compaction and cell death requires its nuclear localization, intracrine ERK1/2 activation and mitochondrial engagement.  相似文献   
8.
Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.  相似文献   
9.
Oxidatively-induced clustered DNA lesions are considered the signature of any ionizing radiation like the ones human beings are exposed daily from various environmental sources (medical X-rays, radon, etc.). To evaluate the role of BRCA1 deficiencies in the mitigation of radiation-induced toxicity and chromosomal instability we have used two human breast cancer cell lines, the BRCA1 deficient HCC1937 cells and as a control the BRCA1 wild-type MCF-7 cells. As an additional control for the DNA damage repair measurements, the HCC1937 cells with partially reconstituted BRCA1 expression were used. Since clustered DNA damage is considered the signature of ionizing radiation, we have measured the repair of double strand breaks (DSBs), non-DSB bistranded oxidative clustered DNA lesions (OCDLs) as well as single strand breaks (SSBs) in cells exposed to radiotherapy-relevant γ-ray doses. Parallel measurements were performed in the accumulation of chromatid and isochromatid breaks. For the measurement of OCDL repair, we have used a novel adaptation of the denaturing single cell gel electrophoresis (Comet assay) and pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. Independent monitoring of the γ-H2AX foci was also performed while metaphase chromatid lesions were measured as an indicator of chromosomal instability. HCC1937 cells showed a significant accumulation of all types of DNA damage and chromatid breaks compared to MCF-7 while BRCA1 partial expression contributed significantly in the overall repair of OCDLs. These results further support the biological significance of repair resistant clustered DNA damage leading to chromosomal instability. The current results combined with previous findings on the minimized ability of base clusters to induce cell death (mainly induced by DSBs), enhance the potential association of OCDLs with breast cancer development especially in the case of a BRCA1 deficiency leading to the survival of breast cells carrying a high load of unrepaired DNA damage clusters.  相似文献   
10.
The fundamental role played by connexins including connexin43 (Cx43) in forming intercellular communication channels (gap junctions), ensuring electrical and metabolic coupling between cells, has long been recognized and extensively investigated. There is also increasing recognition that Cx43, and other connexins, have additional roles, such as the ability to regulate cell proliferation, migration, and cytoprotection. Multiple phosphorylation sites, targets of different signaling pathways, are present at the regulatory, C-terminal domain of Cx43, and contribute to constitutive as well as transient phosphorylation Cx43 patterns, responding to ever-changing environmental stimuli and corresponding cellular needs. The present paper will focus on Cx43 in the heart, and provide an overview of the emerging recognition of a relationship between Cx43, its phosphorylation pattern, and development of resistance to injury. We will also review our recent work regarding the role of an enhanced phosphorylation state of Cx43 in cardioprotection. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号