首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   30篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   9篇
  2014年   7篇
  2013年   8篇
  2012年   15篇
  2011年   21篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   12篇
  2005年   11篇
  2004年   3篇
  2003年   6篇
  2002年   12篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1995年   2篇
  1993年   3篇
  1992年   9篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1971年   1篇
排序方式: 共有200条查询结果,搜索用时 31 毫秒
1.
Human cells treated with interferon synthesize two proteins that exhibit high homology to murine Mx1 protein, which has previously been identified as the mediator of interferon-induced cellular resistance of mouse cells against influenza viruses. Using murine Mx1 cDNA as a hybridization probe, we have isolated cDNA clones originating from two distinct human Mx genes, designated MxA and MxB. In human fibroblasts, expression of MxA and MxB is strongly induced by alpha interferon (IFN-alpha), IFN-beta, Newcastle disease virus, and, to a much lesser extent, IFN-gamma, MxA and MxB proteins have molecular masses of 76 and 73 kilodaltons, respectively, and their sequences are 63% identical. A comparison of human and mouse Mx proteins revealed that human MxA and mouse Mx2 are the most closely related proteins, showing 77% sequence identity. Near their amino termini, human and mouse Mx proteins contain a block of 53 identical amino acids and additional regions of very high sequence similarity. These conserved sequences are also present in a double-stranded RNA-inducible fish gene, which suggests that they may constitute a functionally important domain of Mx proteins. In contrast to mouse Mx1 protein, which accumulates in the nuclei of IFN-treated mouse cells, the two human Mx proteins both accumulate in the cytoplasm of IFN-treated cells.  相似文献   
2.
The Resonant Recognition Model (RRM) is a theoretical method for analysis of protein and nucleotide sequences, based on the Fourier transform of the numerical representation of sequences. The amplitude spectrum of this transform is designated Informational Spectrum (IS). There are certain common frequencies in IS of growth-regulating factors. These characteristic frequencies may correlate with their roles in cell proliferation and metabolism, and in antitumor activity. IS of IL-2 has prominent characteristics in the main frequency domain of growth factors, frequency domain of antitumor factors, and frequency domain characteristic for IL-2-alpha receptor. By means of the inverse method for these 3 domains, the amino acids in the sequence of human IL-2 that may be relevant to its biological function, the so-called "hot spots", were predicted. The most probable hot spots, obtained in this way, are in the potential binding site of IL-2 to its receptor, which agrees with experimental data.  相似文献   
3.
In this study, microdialysis was used to investigate functional recovery of central cholinergic neurons in the forebrain of rats with cortical devascularizing lesions. Mature male rats were unilaterally lesioned by disruption of the pia arachnoid vessels and genetically modified fibroblasts secreting nerve growth factor (NGF) were placed at the site of the lesion. One month following surgery, microdialysis probes were installed in the remaining cortex and were perfused with artificial cerebrospinal fluid (csf) containing neostigmine (5 nM) and/or KCl (100 mM). The basal (non-stimulated) release of acetylcholine (ACh) in the cortex was similar in all experimental groups, whereas KCl stimulated release of ACh was significantly augmented (P < 0.05) in the ipsilateral remaining cortex in lesioned animals that have been implanted with fibroblasts secreting NGF. These results suggest that NGF secreted by genetically engineered fibroblasts modulates neuroplasticity in the adult mammalian CNS and may favour recovery of cortical function following injury.  相似文献   
4.
5.
MxA and MxB are interferon-induced proteins of human cells and are related to the murine protein Mx1, which confers selective resistance to influenza virus. In contrast to the nuclear murine protein Mx1, MxA and MxB are located in the cytoplasm, and their role in the interferon-induced antiviral state was unknown. In this report we show that transfected cell lines expressing MxA acquired a high degree of resistance to influenza A virus. Surprisingly, MxA also conferred resistance to vesicular stomatitis virus. Expression of MxA in transfected 3T3 cells had no effect on the multiplication of two picornaviruses, a togavirus, or herpes simplex virus type 1. Treatment of MxA-expressing cells with antibodies to mouse alpha-beta interferon did not abolish the resistance phenotype. The conclusion that resistance to influenza virus and vesicular stomatitis virus was due to the specific action of MxA is further supported by the observation that transfected 3T3 cell lines expressing the related MxB failed to acquire virus resistance.  相似文献   
6.
The murine Mx1 protein is an interferon-inducible protein which confers selective resistance to influenza virus infection both in vitro and in vivo. The precise mechanism by which the murine Mx1 specifically inhibits replication of influenza virus is not known. Previously, sensitive replication systems for influenza virus ribonucleoprotein, in which a synthetic influenza virus-like ribonucleoprotein is replicated and transcribed by influenza virus proteins provided in trans, have been developed. With these systems, the antiviral activity of the murine Mx1 protein was examined. It was found that continued expression of influenza polymerase polypeptides via vaccinia virus vectors can titrate out the inhibitory action of the murine Mx1 protein. This titration of inhibitory activity also occurs when the viral PB2 protein alone is overexpressed, suggesting that an antiviral target for the murine Mx1 polypeptide is the viral PB2 protein.  相似文献   
7.
8.
9.
Exome sequencing of primary tumors identifies complex somatic mutation patterns. Assignment of relevance of individual somatic mutations is difficult and poses the next challenge for interpretation of next generation sequencing data. Here we present an approach how exome sequencing in combination with SNP microarray data may identify targets of chromosomal aberrations in myeloid malignancies. The rationale of this approach is that hotspots of chromosomal aberrations might also harbor point mutations in the target genes of deletions, gains or uniparental disomies (UPDs). Chromosome 11 is a frequent target of lesions in myeloid malignancies. Therefore, we studied chromosome 11 in a total of 813 samples from 773 individual patients with different myeloid malignancies by SNP microarrays and complemented the data with exome sequencing in selected cases exhibiting chromosome 11 defects. We found gains, losses and UPDs of chromosome 11 in 52 of the 813 samples (6.4%). Chromosome 11q UPDs frequently associated with mutations of CBL. In one patient the 11qUPD amplified somatic mutations in both CBL and the DNA repair gene DDB1. A duplication within MLL exon 3 was detected in another patient with 11qUPD. We identified several common deleted regions (CDR) on chromosome 11. One of the CDRs associated with de novo acute myeloid leukemia (P=0.013). One patient with a deletion at the LMO2 locus harbored an additional point mutation on the other allele indicating that LMO2 might be a tumor suppressor frequently targeted by 11p deletions. Our chromosome-centered analysis indicates that chromosome 11 contains a number of tumor suppressor genes and that the role of this chromosome in myeloid malignancies is more complex than previously recognized.  相似文献   
10.
The linear chromosome of Streptomyces coelicolor contains two paralogous ssb genes, ssbA and ssbB. Following mutational analysis, we concluded that ssbA is essential, whereas ssbB plays a key role in chromosome segregation during sporulation. In the ssbB mutant, ∼30% of spores lacked DNA. The two ssb genes were expressed differently; in minimal medium, gene expression was prolonged for both genes and significantly upregulated for ssbB. The ssbA gene is transcribed as part of a polycistronic mRNA from two initiation sites, 163 bp and 75 bp upstream of the rpsF translational start codon. The ssbB gene is transcribed as a monocistronic mRNA, from an unusual promoter region, 73 bp upstream of the AUG codon. Distinctive DNA-binding affinities of single-stranded DNA-binding proteins monitored by tryptophan fluorescent quenching and electrophoretic mobility shift were observed. The crystal structure of SsbB at 1.7 Å resolution revealed a common OB-fold, lack of the clamp-like structure conserved in SsbA and previously unpublished S-S bridges between the A/B and C/D subunits. This is the first report of the determination of paralogous single-stranded DNA-binding protein structures from the same organism. Phylogenetic analysis revealed frequent duplication of ssb genes in Actinobacteria, whereas their strong retention suggests that they are involved in important cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号