首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MxA and MxB are interferon-induced proteins of human cells and are related to the murine protein Mx1, which confers selective resistance to influenza virus. In contrast to the nuclear murine protein Mx1, MxA and MxB are located in the cytoplasm, and their role in the interferon-induced antiviral state was unknown. In this report we show that transfected cell lines expressing MxA acquired a high degree of resistance to influenza A virus. Surprisingly, MxA also conferred resistance to vesicular stomatitis virus. Expression of MxA in transfected 3T3 cells had no effect on the multiplication of two picornaviruses, a togavirus, or herpes simplex virus type 1. Treatment of MxA-expressing cells with antibodies to mouse alpha-beta interferon did not abolish the resistance phenotype. The conclusion that resistance to influenza virus and vesicular stomatitis virus was due to the specific action of MxA is further supported by the observation that transfected 3T3 cell lines expressing the related MxB failed to acquire virus resistance.  相似文献   

2.
Activity of rat Mx proteins against a rhabdovirus.   总被引:20,自引:13,他引:7       下载免费PDF全文
E Meier  G Kunz  O Haller    H Arnheiter 《Journal of virology》1990,64(12):6263-6269
Upon stimulation with alpha/beta interferon, rat cells synthesize three Mx proteins. Sequence analysis of corresponding cDNAs reveals that these three proteins are derived from three distinct genes. One of the rat cDNAs is termed Mx1 because it is most closely related to the mouse Mx1 cDNA and because it codes for a nuclear protein that, like the mouse Mx1 protein, inhibits influenza virus growth. However, this protein differs from mouse Mx1 protein, in that it also inhibits vesicular stomatitis virus (VSV), a rhabdovirus. A second rat cDNA is more closely related to the mouse Mx2 cDNA and directs the synthesis of a cytoplasmic protein that inhibits VSV but not influenza virus. The third rat cDNA codes for a cytoplasmic protein that differs from the second one in only eight positions and has no detectable activity against either virus. These results indicate that rat Mx proteins have antiviral specificities not anticipated from the analysis of the murine Mx1 protein.  相似文献   

3.
Polymorphisms of the chicken antiviral MX gene   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
Mx proteins are a family of large GTPases that are induced exclusively by interferon-α/β and have a broad antiviral activity against several viruses, including influenza A virus (IAV). Although the antiviral activities of mouse Mx1 and human MxA have been studied extensively, the molecular mechanism of action remains largely unsolved. Because no direct interaction between Mx proteins and IAV proteins or RNA had been demonstrated so far, we addressed the question of whether Mx protein would interact with cellular proteins required for efficient replication of IAV. Immunoprecipitation of MxA revealed its association with two closely related RNA helicases, UAP56 and URH49. UAP56 and its paralog URH49 play an important role in IAV replication and are involved in nuclear export of IAV mRNAs and prevention of dsRNA accumulation in infected cells. In vitro binding assays with purified recombinant proteins revealed that MxA formed a direct complex with the RNA helicases. In addition, recombinant mouse Mx1 was also able to bind to UAP56 or URH49. Furthermore, the complex formation between cytoplasmic MxA and UAP56 or URH49 occurred in the perinuclear region, whereas nuclear Mx1 interacted with UAP56 or URH49 in distinct dots in the nucleus. Taken together, our data reveal that Mx proteins exerting antiviral activity can directly bind to the two cellular DExD/H box RNA helicases UAP56 and URH49. Moreover, the observed subcellular localization of the Mx-RNA helicase complexes coincides with the subcellular localization, where human MxA and mouse Mx1 proteins act antivirally. On the basis of these data, we propose that Mx proteins exert their antiviral activity against IAV by interfering with the function of the RNA helicases UAP56 and URH49.  相似文献   

6.
E Meier  J Fh  M S Grob  R End  P Staeheli    O Haller 《Journal of virology》1988,62(7):2386-2393
Mouse Mx protein, an interferon (IFN)-induced nuclear protein, confers selective resistance to influenza virus. We show here that, as with influenza virus-resistant Mx+ mouse embryo cells, influenza virus mRNA accumulation and protein synthesis are strongly inhibited in rat embryo cells treated with IFN-alpha/beta. IFN-alpha/beta induced in rat cells the synthesis of Mx-related mRNAs migrating on Northern (RNA) gels as two bands of about 3.5 and 2.5 kilobases which directed the synthesis of three electrophoretically distinct proteins called rat Mx proteins 1, 2, and 3. The three rat proteins were antigenically related to the mouse Mx protein but differed in molecular weight and intracellular location. Rat Mx protein 1 was found predominantly in the nucleus and, on the basis of several criteria, resembled the nuclear mouse Mx protein. It was induced by IFN-alpha/beta in all 28 inbred rat strains tested. Rat Mx proteins 2 and 3 differed from protein 1 at the carboxy terminus and were predominantly cytoplasmic like the human Mx homolog. Sequence data of partial cDNA clones indicate that three Mx-related genes, rather than one, exist in the rat.  相似文献   

7.
8.
M Müller  B Brenig  E L Winnacker  G Brem 《Gene》1992,121(2):263-270
An important aspect of gene transfer into farm animals is the improvement of disease resistance. The mouse Mx1 protein is known to be sufficient to confer resistance to influenza viruses. Gene constructs containing the mouse Mx1 cDNA controlled by the human metallothionein IIA promoter (hMTIIA::Mx), the SV40 early enhancer/promoter region (SV40::Mx) and the mouse Mx1 promoter (mMx::Mx) were transferred into pigs. The results of the gene transfer experiments with the hMTIIA::Mx and the SV40::Mx constructs indicate that the permanent high-level synthesis of Mx1 might be deleterious to the organism: the gene transfer efficiency was surprisingly low, and all transgenic piglets born had rearrangements in their transgene copies that abolished protein synthesis. The use of the interferon (IFN)- and virus-inducible mMx::Mx construct resulted in normal gene transfer efficiency. Two transgenic pig lines could be established which expressed IFN-inducible mouse Mx1 mRNA. Extensive protein analysis did not detect mouse Mx1 in IFN-treated transgenic animals.  相似文献   

9.
10.
Mx proteins form a small family of interferon (IFN)-induced GTPases with potent antiviral activity against various negative-strand RNA viruses. To examine the antiviral spectrum of human MxA in homologous cells, we stably transfected HEp-2 cells with a plasmid directing the expression of MxA cDNA. HEp-2 cells are permissive for many viruses and are unable to express endogenous MxA in response to IFN. Experimental infection with various RNA and DNA viruses revealed that MxA-expressing HEp-2 cells were protected not only against influenza virus and vesicular stomatitis virus (VSV) but also against Semliki Forest virus (SFV), a togavirus with a single-stranded RNA genome of positive polarity. In MxA-transfected cells, viral yields were reduced up to 1,700-fold, and the degree of inhibition correlated well with the expression level of MxA. Furthermore, expression of MxA prevented the accumulation of 49S RNA and 26S RNA, indicating that SFV was inhibited early in its replication cycle. Very similar results were obtained with MxA-transfected cells of the human monocytic cell line U937. The results demonstrate that the antiviral spectrum of MxA is not restricted to negative-strand RNA viruses but also includes SFV, which contains an RNA genome of positive polarity. To test whether MxA protein exerts its inhibitory activity against SFV in the absence of viral structural proteins, we took advantage of a recombinant vector based on the SFV replicon. The vector contains only the coding sequence for the viral nonstructural proteins and the bacterial LacZ gene, which was cloned in place of the viral structural genes. Upon transfection of vector-derived recombinant RNA, expression of the β-galactosidase reporter gene was strongly reduced in the presence of MxA. This finding indicates that viral components other than the structural proteins are the target of MxA action.  相似文献   

11.
Mx+ mice are much more resistant to influenza virus than Mx- strains. The resistance is mediated by interferon (IFN) alpha/beta. After IFN treatment, Mx+ but not Mx- cells accumulate Mx protein and become specifically resistant to orthomyxoviruses. cDNA encoding Mx protein was cloned and sequenced. Southern analyses indicate that Mx- alleles derive from their Mx+ counterpart by deletions. IFN-treated Mx+ cells contained a 3.5 kb Mx mRNA, while Mx- cells showed only traces of shorter Mx RNA. Mx- cells transformed with Mx cDNA expressed Mx protein constitutively to varying extents; resistance of individual cells to influenza virus correlated with Mx protein expression. Thus, specific resistance to influenza virus in vivo may be attributed to Mx protein expression and is independent of other IFN-mediated effects.  相似文献   

12.
13.
The nearly complete amino acid sequence obtained for murine calcyclin from Ehrlich ascites tumor cells reveals a very strong similarity with the rat and human sequences previously deduced from corresponding cDNA clones. While mouse and rat calcyclins are identical, the human protein shows at three positions a conservative amino acid replacement. Using a mouse calcyclin affinity matrix, two proteins with molecular masses of about 36 kDa have been purified from Ehrlich ascites tumor cells. The interaction between these two proteins and the immobilized calcyclin is strictly Ca2(+)-dependent. Immunological criteria and partial sequence data identify the two calcyclin-binding proteins as the phospholipid-binding protein annexin II (p36) and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. These observations suggest that calcyclin may exert its physiological function by a Ca2(+)-dependent interaction with cellular targets, e.g. annexin II or glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

14.
The human protein p78 is induced and accumulated in cells treated with type I interferon or with some viruses. It is the human homolog of the mouse Mx protein involved in resistance to influenza virus. A full-length cDNA clone encoding the human p78 protein was cloned and sequenced. It contained an open reading frame of 662 amino acids, corresponding to a polypeptide with a predicted molecular weight of 75,500, in good agreement with the Mr of 78,000 determined on sodium dodecyl sulfate gels for the purified natural p78 protein. The cloned gene was expressed in vitro and corresponded in size, pI, antigenic determinant(s), and NH2 terminus sequence to the natural p78 protein. A second cDNA was cloned which encoded a 633-amino-acid protein sharing 63% homology with human p78. This p78-related protein was translated in reticulocyte lysates where it shared an antigenic determinant(s) with p78. A putative 5' regulatory region of 83 base pairs contained within the gene promoter region upstream of the presumed p78 mRNA cap site conferred human alpha interferon (IFN-alpha) inducibility to the cat reporter gene. The p78 protein accumulated to high levels in cells treated with IFN-alpha. In contrast, the p78-related protein was not expressed at detectable levels. The rate of decay of p78 levels in diploid cells after a 24-h treatment with IFN-alpha was much slower than the rate of decay of the antiviral state against influenza A virus and vesicular stomatitis virus, suggesting that the p78 protein is probably not involved in an antiviral mechanism. Furthermore, we showed that these proteins, as well as the homologous mouse Mx protein, possess three consensus elements in proper spacing, characteristic of GTP-binding proteins.  相似文献   

15.
A novel protein kinase, Mx-interacting protein kinase (PKM), has been identified in a yeast two-hybrid screen for interaction partners of human MxA, an interferon-induced GTPase with antiviral activity against several RNA viruses. A highly conserved protein kinase domain is present in the N-terminal moiety of PKM, whereas an Mx interaction domain overlaps with C-terminal PEST sequences. PKM has a molecular weight of about 127,000 and exhibits high sequence homology to members of a recently described family of homeodomain-interacting protein kinases. Recombinant PKM has serine/threonine kinase activity that is abolished by a single amino acid substitution in the ATP binding domain (K221W). PKM catalyzes autophosphorylation and phosphorylation of various cellular and viral proteins. PKM is expressed constitutively and colocalizes with the interferon-inducible Sp100 protein and murine Mx1 in discrete nuclear structures known as nuclear bodies.  相似文献   

16.
17.
The murine cell membrane glycoprotein PC-1 is a homodimer with restricted tissue distribution, being first characterized in plasma cells. We now describe the isolation of cDNA clones encoding the human homolog of the murine PC-1 protein, its complete amino acid sequence, and its chromosomal location. Overall, the amino acid sequence of the human protein is about 80% identical to the murine protein, although the extent of homology varies in different domains. It had not been possible to assign a definitive amino terminus to the murine protein. Comparison of the murine and human sequence necessitates reassignment of the amino terminus, resulting in a cytoplasmic tail of 24 amino acids rather than 58 amino acids as previously published for the mouse. The sequence of several independently obtained cDNA clones indicates that the 3' end of the mRNA is subject to alternative splicing. Southern blots suggest a single copy gene. In situ chromosomal hybridization localizes the gene for human PC-1 to chromosome 6q22-q23, a common site for deletions in human lymphoid neoplasia.  相似文献   

18.
Treatment of Ehrlich ascites-tumour (EAT) cells with interferon (IFN) abolished their ability to secrete a 32 kDa protein that was secreted by growing EAT cells. These IFN-treated cells secreted two proteins (molecular masses 100 and 89 kDa as estimated by SDS/polyacrylamide-gel electrophoresis) that were not detected in two-dimensional gel electrophoresis of the culture fluid of untreated EAT cells. The sequence of 20 amino acids from the N-terminal end of the 32 kDa protein was very similar to portions of sequences of mouse proviral gag proteins.  相似文献   

19.
A new murine cDNA of nm23/NDP kinase was isolated. A RT-PCR product was obtained from the normal mouse liver mRNA with primers designed for the human nm23-H2 gene. The product was used as a probe to screen a cDNA library from the murine melanoma cell line, B16, and two clones containing the entire open reading frame were obtained. It was predicted that the DNA sequence encoded 152 amino acids which was 98% identical to the nm23-H2 protein. The entire nm23-M1 and -M2 gene-coding regions were translated as fusion proteins with a glutathione S-transferase. These fusion proteins displayed NDP kinase activities.  相似文献   

20.
The "protective protein" is the glycoprotein that forms a complex with the lysosomal enzymes beta-galactosidase and neuraminidase. Its deficiency in man leads to the metabolic storage disorder galactosialidosis. The primary structure of human protective protein, deduced from its cloned cDNA, shows homology to yeast serine carboxypeptidases. We have isolated a full-length cDNA encoding murine protective protein. The nucleotide sequences as well as the predicted amino acid sequences are highly conserved between man and mouse. Domains important for the protease function are completely identical in the two proteins. Both human and mouse mature protective proteins covalently bind radiolabeled diisopropyl fluorophosphate. Transient expression of the murine cDNA in COS-1 cells yields a protective protein precursor of 54 kDa, a size characteristic of the glycosylated form. This cDNA-encoded precursor, endocytosed by human galactosialidosis fibroblasts, is processed into a 32- and a 20-kDa heterodimer and corrects beta-galactosidase and neuraminidase activities. A tissue-specific expression of protective protein mRNA is observed when total RNA from different mouse organs is analyzed on Northern blots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号