首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15498篇
  免费   1697篇
  国内免费   370篇
  2023年   91篇
  2022年   116篇
  2021年   354篇
  2020年   295篇
  2019年   317篇
  2018年   370篇
  2017年   326篇
  2016年   467篇
  2015年   612篇
  2014年   731篇
  2013年   789篇
  2012年   899篇
  2011年   845篇
  2010年   574篇
  2009年   554篇
  2008年   669篇
  2007年   604篇
  2006年   517篇
  2005年   479篇
  2004年   427篇
  2003年   378篇
  2002年   343篇
  2001年   1181篇
  2000年   1028篇
  1999年   759篇
  1998年   253篇
  1997年   245篇
  1996年   201篇
  1995年   171篇
  1994年   169篇
  1993年   120篇
  1992年   380篇
  1991年   334篇
  1990年   295篇
  1989年   228篇
  1988年   205篇
  1987年   147篇
  1986年   155篇
  1985年   118篇
  1984年   63篇
  1983年   65篇
  1981年   30篇
  1979年   42篇
  1978年   29篇
  1976年   37篇
  1975年   35篇
  1973年   39篇
  1972年   50篇
  1971年   45篇
  1970年   34篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
C A Yu  L Q Gu  Y Z Lin  L Yu 《Biochemistry》1985,24(15):3897-3902
The effect of the alkyl side chain of the ubiquinone molecule on the electron-transfer activity of ubiquinone in mitochondrial succinate-cytochrome c reductase is studied by using synthetic ubiquinone derivatives that possess the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different alkyl side chains at the 6-position. The alkyl side chains vary in chain length, degree of saturation, and location of double bonds. When a ubiquinone derivative is used as an electron acceptor for succinate-ubiquinone reductase, an alkyl side chain of six carbons is needed to obtain the maximum activity. However, when it serves as an electron donor for ubiquinol-cytochrome c reductase or as a mediator in succinate-cytochrome c reductase, an alkyl side chain of 10 carbons gives maximal efficiency. Introduction of one or two isolated double bonds into the alkyl side chain of the ubiquinone molecule has little effect on electron-transfer activity. However, a conjugated double bond system in the alkyl side chain drastically reduces electron-transfer efficiency. The effect of the conjugated double bond system on the electron-transferring efficiency of ubiquinone depends on its location in the alkyl side chain. When location is far from the benzoquinone ring, the effect is minimal. These observations together with the results obtained from photoaffinity-labeling studies lead us to conclude that flexibility in the portion of the alkyl side chain immediately adjacent to the benzoquinone ring is required for the electron-transfer activity of ubiquinone.  相似文献   
2.
3.
We released seeds of two sympatric tree species, Corylus mandshurica (seed with thinner seed hull, higher nutrition) and C. heterophylla (seeds with thicker seed hull, lower nutrition) in the masting year of C. mandshurica in 2008, and C. heterophylla in 2009, respectively, to investigate how seed masting of the two sympatric Corylus species affects seed removal and dispersal fitness of the two species differently at both intra- and inter-specific levels. At intra-specific level, the authors found mast seeding of both C. mandshurica and C. heterophylla significantly reduced seed removal, seed consumption, but increased seed dispersal distance and seed dispersal fitness of the released seeds. Mast seeding of C. mandshurica increased seed caching of C. mandshurica. At inter-specific level, the authors found mast seeding of C. mandshurica reduced seed removal of C. heterophylla, but mast seeding of C. heterophylla did not significantly reduce seed removal of C. mandshurica. Mast seeding of C. mandshurica reduced seed consumption of C. heterophylla, while mast seeding of C. heterophylla reduced seed consumption of C. mandshurica. We found mast seeding of C. mandshurica significantly reduced seed dispersal distance of C. heterophylla, while mast seeding of C. heterophylla significantly increased seed dispersal distance of C. mandshurica. We found that mast seeding of C. mandshurica significantly increased seed dispersal fitness of C. heterophylla, while mast seeding of C. heterophylla did not significantly increase seed dispersal fitness of C. mandshurica. More studies are needed to reveal the ecological consequences of mast seeding at inter-specific or community-level. Seed traits may attribute the differences of mast seeding at inter-specific level. Because seeds with thinner seed hull and higher nutrition were more harvested and eaten by rodents, mast seeding of C. mandshurica might have reduced seed removal and seed consumption, but increased dispersal fitness of C. heterophylla (seeds with thicker seed hull, lower nutrition). Therefore, synchrony among species is, or is not, selectively beneficial to the focus species depends on seed traits which determine gains from mast seeding at inter-specific level.  相似文献   
4.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
5.
6.
In total, 366 birds representing 55 species in 24 families and eight orders, were examined for chewing lice (Phthiraptera: Amblycera, Ischnocera) in two high‐altitude localities in Yunnan Province, China. In Ailaoshan, almost all of the birds examined were resident passeriforms, of which 36% were parasitized by chewing lice. In Jinshanyakou, most birds were on migration, and included both passerine and non‐passerine birds. Of the passerine birds caught in Jinshanyakou, only one bird (0.7%) was parasitized by chewing lice. The prevalence of Myrsidea and Brueelia‐complex lice on birds caught in Ailaoshan was higher than in previous reports. Of the chewing lice identifiable to species level, three represent new records for China: Actornithophilus hoplopteri (Mjöberg, 1910), Maculinirmus ljosalfar Gustafsson & Bush, 2017 and Quadraceps sinensis Timmermann, 1954. In total, 17 new host records are included, of which we describe two as new species in the Brueelia‐complex: Guimaraesiella (Cicchinella) ailaoshanensis sp. nov. ex Schoeniparus dubius dubius (Hume, 1874) and G. (C.) montisodalis sp. nov. ex Fulvetta manipurensis tonkinensis Delacour & Jabouille, 1930. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:9FC3D8EE‐2CED‐4DBE‐A1DB‐471B71260D27 .  相似文献   
7.
8.
1. Larval success was compared when one, two, or three egg clutches were laid in kumquat fruits (≈ 10 ml in volume) either successively on the same day or at the rate of one clutch per day. 2. Increased clutch density was associated with a significant decrease in larval survival rate and non‐significant decreases in larval growth rate and pupal mass. 3. Larval and pupal parameters showed significantly larger variance when clutches were laid on successive days than on the same day, suggesting a competitive advantage for older larvae over younger larvae. 4. The results suggest that, in small fruit, reduced fitness due to larval competition may act against possible fitness benefits due to social facilitation among adult females, hence reducing the likelihood of non‐linear population dynamics caused by processes such as the Allee effect.  相似文献   
9.
Cyclizations of alkylhydrazines with N-acyl-S-methylisothioureas, readily synthesized from acyl chlorides, sodium thioisocyanate, dialkylamines then methyl iodide in a one-pot reaction, gave 1-alkyl-3-dialkylamino-5-phenyltriazoles 7 as major products. The regioisomers were assigned through the use of NOE NMR experiments. While bearing a N-bis(cyclopropyl)methyl-N-propylamino group, this series of compounds shows very good binding affinity on the human CRF1 receptor. Among them, 1-methyl-3-[N-bis(cyclopropyl)methyl-N-propylamino]-5-(2,4-dichlorophenyl)-1H-[1,2,4]triazole 7a had the best binding affinity for the CRF1 receptor (Ki=9 nM).  相似文献   
10.
Q Ruan  K Ruan  C Balny  M Glaser  W W Mantulin 《Biochemistry》2001,40(48):14706-14714
Adenylate kinase (AKe) from E. coli is a small, single-chain, monomeric enzyme with no tryptophan and a single cysteine residue. We have constructed six single-Trp mutants of AKe to facilitate optical studies of these proteins and to specifically examine the interrelationship between their structure, function, dynamics, and folding reactions. In this study, the effects of hydrostatic pressure on the folding reactions of AKe were studied. The native structure of AKe was transformed to a non-native, yet pressure stable, conformation by hydrostatic pressure of about 300 MPa. This pressure lability of AKe is rather low for a monomeric protein and presumably may be attributed to substantial conformational flexibility and a correspondingly large volume change. The refolding of AKe after pressure-induced denaturation was reversible under ambient conditions. At low temperature (near 0 degrees C), the refolding process of pressure-exposed AKe mutants displayed a significant hysteresis. The observation of a slow refolding rate in the 193 region and a faster folding rate around the active site (86, 41, 73 regions) leads us to suggest that in the folding process, priority is afforded to functional regions. The slow structural return of the 193 region apparently does not hinder the more rapid return of enzymatic activity of AKe. Circular dichroism studies on the pressure-denatured Y193W mutant show that the secondary structure (calculated from far-UV spectra) returned at a rapid rate, but the tertiary structure alignment (calculated from near-UV spectra) around the 193 region occurred more slowly at rates comparable to those detected by fluorescence intensity. Denaturation of AKe mutants by guanidine hydrochloride and subsequent refolding experiments were also consistent with a much slower refolding process around the 193 region than near the active site. Fast refolding kinetic traces were observed in F86W, S41W, and A73W mutants using a fluorescence detection stopped-flow rapid mixing device, while only a slow kinetic trace was observed for Y193W. The results suggest that the differences in regional folding rates of AKe are not derived from the specific denaturation methods, but rather are inherent in the structural organization of the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号