首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  2022年   1篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   2篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有105条查询结果,搜索用时 296 毫秒
1.
Abstract

A refinement of the recent results for poly[d(A)] · poly[d(T)] (Alexeev et al., J. Biomol. Struct. Dyn. 4, 989 (1987)) involving additional parameters of the base-pair structure and of the sugar- phosphate backbone expands the conformational potential of this polynucleotide of the B type to include the possibility of bifurcated hydrogen bonds of the kind recently discovered in crystalline deoxyoligonucleotide with lone d(A)n · d(T)n stretch (Nelson et al., Nature 330, 221 (1987)).

Still, analysis of the available data and energy calculations do not seem to indicate that the bifurcated H-bonds are a crucial factor responsible for the anomalous structure of the d(A)n · d(T)n sequence. The unique structural properties of poly [d(A)] · poly[d(T)] can hardly be explained without taking into account its interactions with the double-layer hydration spine in the minor groove. In view of the hydration mechanism stabilizing poly [d(A)] · poly [d(T)] and of the polynucleotide's heteronomous prehistory (Arnott et al., Nucleic Acids Res. 11, 4141 (1983)) we suggest that this B-type structure be called Bh.  相似文献   
2.
3.

Background  

The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank.  相似文献   
4.
Within the last decade, a number of nucleic acid-based gene targeting strategies have been developed with the ultimate goal to cure human genetic disorders caused by mutations. Thus far, site-directed gene targeting is the only procedure that can make predefined alterations in the genome. The advantage of this approach is that expression of the corrected gene is regulated in the same way as a normal gene. In addition, targeted specific mutations can be made in the genome for functional analysis of proteins. Several approaches, including chimeric RNA-DNA oligonucleotides, short single-stranded oligonucleotides, small fragment homologous replacements, and triple-helix-forming oligonucleotides have been used for targeted modification of the genome. Due to the absence of standardized assays and mechanistic studies in the early developmental stages of oligonucleotide-directed gene alteration, it has been difficult to explain the large variations and discrepancies reported. Here, we evaluate the progress in the field, summarize the achievements in understanding the molecular mechanism, and outline the perspective for the future development. This review will emphasize the importance of reliable, sensitive and standardized assays to measure frequencies of gene repair and the use of these assays in mechanistic studies. Such studies have become critical for understanding the gene repair process and setting realistic expectations on the capability of this technology. The conventionally accepted but unproven dogmas of the mechanism of gene repair are challenged and alternative points of view are presented. Another important focus of this review is the development of general selection procedures that are required for practical application of this technology.  相似文献   
5.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   
6.
The pancreas of the rats exposed to primary and repeated prolonged hypergravity was studied by means of cytological methods. The rats were rotated on centrifuge at 2 G for 19 days and then after 30-day adaptation to 1 G were repeatedly exposed to 2 G for 5 days simultaneously with the rats first subjected to 5-day 2 G. After 5-day and 19-day hypergravity in pancreatic beta-cells the signs of decrease in insulin production were found. Adaptation of rats to 1 G for 30 days restored this process. Repeated 2 G for 5 days induced in beta-cells the changes of structure and hormonal product content indicating the pronounced increase in insulin synthesis and secretion. Response of alpha-cells to repeated 5-day 2 G was in parallel with beta-cell reactions.  相似文献   
7.
Oligonucleotides of nonregular heteropyrimidine sequences incorporating or not incorporating purine residues 5'-d(ACTCCCTTCTCCTCTCTA), 5'-d(ACTCCCTGGTCCTCTCTA), 5'-d(TCTCTCCTGGTCCCTCC), and 5'-d(TCTCTCCTCTTCCCTCC) can form self-associated parallel-stranded (ps) structures at pH 4-5.5. The ps structures were identified by studying at neutral and acidic pH UV melting transitions, FTIR spectra, and fluorescence of pyrene-labeled oligonucleotides as well as by chemical joining of 5'-phosphorylated oligonucleotides. A gel electrophoresis run for oligonucleotides 5'-d(TCTCTCCTCTTCCCTCC) and 5'-d(ACTCCCTTCTCCTCTCTA) has shown the formation of homoduplexes at low DNA strand concentrations. Ps structures are held by C-C(+) base pairs and have N- and S-types of sugar puckering as detected by FTIR spectroscopy in the millimolar concentration range. Guanine inserts as well as thymine and purine inserts into an oligomeric cytosine sequence make the formation of the tetraplex i-motif unfavorable. MvaI restriction endonuclease, which recognizes the CCT/AGG sequence in DNA, does not cleave parallel pseudosubstrates.  相似文献   
8.
8-Amino-7-oxononanoate synthase (also known as 7-keto-8-aminopelargonate synthase, EC 2.3.1.47) is a pyridoxal 5'-phosphate-dependent enzyme which catalyzes the decarboxylative condensation of L-alanine with pimeloyl-CoA in a stereospecific manner to form 8(S)-amino-7-oxononanoate. This is the first committed step in biotin biosynthesis. The mechanism of Escherichia coli AONS has been investigated by spectroscopic, kinetic, and crystallographic techniques. The X-ray structure of the holoenzyme has been refined at a resolution of 1.7 A (R = 18.6%, R(free) = 21. 2%) and shows that the plane of the imine bond of the internal aldimine deviates from the pyridine plane. The structure of the enzyme-product external aldimine complex has been refined at a resolution of 2.0 A (R = 21.2%, R(free) = 27.8%) and shows a rotation of the pyridine ring with respect to that in the internal aldimine, together with a significant conformational change of the C-terminal domain and subtle rearrangement of the active site hydrogen bonding. The first step in the reaction, L-alanine external aldimine formation, is rapid (k(1) = 2 x 10(4) M(-)(1) s(-)(1)). Formation of an external aldimine with D-alanine, which is not a substrate, is significantly slower (k(1) = 125 M(-)(1) s(-)(1)). Binding of D-alanine to AONS is enhanced approximately 2-fold in the presence of pimeloyl-CoA. Significant substrate quinonoid formation only occurs upon addition of pimeloyl-CoA to the preformed L-alanine external aldimine complex and is preceded by a distinct lag phase ( approximately 30 ms) which suggests that binding of the pimeloyl-CoA causes a conformational transition of the enzyme external aldimine complex. This transition, which is inferred by modeling to require a rotation around the Calpha-N bond of the external aldimine complex, promotes abstraction of the Calpha proton by Lys236. These results have been combined to form a detailed mechanistic pathway for AONS catalysis which may be applied to the other members of the alpha-oxoamine synthase subfamily.  相似文献   
9.
The new substrates 4-thiouridine and 4-thiothymidine were proposed for spectrophotometric measurement of the activity of uridine (UP) and thymidine (TP) phosphorylases. At pH 7.5, 4-thiouridine has an absorbance maximum at 330 nm, and the difference in extinction coefficient () between 4-thiouridine and 4-thiouracil is 3000 –1cm–1. 4-Thiouridine proved to be a good substrate for UP: the Michaelis ( ) and catalytic (k cat) constants were estimated respectively at 130 M and 49 s–1 at 25°C. Even a greater (5000 M–1cm–1 at 336 nm) was observed for the 4-thiothymidine/4-thiothymine pair.  相似文献   
10.

Background  

Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号