首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   7篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1998年   4篇
  1988年   1篇
  1982年   1篇
  1975年   2篇
排序方式: 共有78条查询结果,搜索用时 31 毫秒
1.
Goats and some sheep synthesize a juvenile hemoglobin, Hb C (alpha 2 beta C2), at birth and produce this hemoglobin exclusively during severe anemia. Sheep that synthesize this juvenile hemoglobin are of the A haplotype. Other sheep, belonging to a separate group, the B haplotype, do not synthesize hemoglobin C and during anemia continue to produce their adult hemoglobin. To understand the basis for this difference we have determined the structural organization of the beta- globin locus of B-type sheep by constructing and isolating overlapping genomic clones. These clones have allowed us to establish the linkage map 5' epsilon I-epsilon II-psi beta I-beta B-epsilon III-epsilon IV- psi beta II-beta F3' in this haplotype. Thus, B sheep lack four genes, including the BC gene, and have only eight genes, compared with the 12 found in the goat globin locus. The goat beta-globin locus is as follows: 5' epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F3'. Southern blot analysis of A-type sheep reveals that these animals have a beta- globin locus similar to that of goat, i.e., 12 globin genes. Thus, the beta-globin locus of B-haplotype sheep resembles that of cows and may have retained the duplicated locus of the ancestor of cows and sheep. Alternatively, the B-sheep locus arrangement may be the result of a deletion of a four-gene set from the triplicated locus.   相似文献   
2.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
3.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
4.
5.
6.
Correlative microscopy is a sophisticated approach that combines the capabilities of typically separate, but powerful microscopy platforms: often including, but not limited, to conventional light, confocal and super-resolution microscopy, atomic force microscopy, transmission and scanning electron microscopy, magnetic resonance imaging and micro/nano CT (computed tomography). When targeting rare or specific events within large populations or tissues, correlative microscopy is increasingly being recognized as the method of choice. Furthermore, this multi-modal assimilation of technologies provides complementary and often unique information, such as internal and external spatial, structural, biochemical and biophysical details from the same targeted sample. The development of a continuous stream of cutting-edge applications, probes, preparation methodologies, hardware and software developments will enable realization of the full potential of correlative microscopy.  相似文献   
7.
The soilborne fungal pathogen Fusarium oxysporum causes vascular wilt and root rot diseases in many plant species. We investigated the role of cyclic AMP-dependent protein kinase A of F. oxysporum (FoCPKA) in growth, morphology, and root attachment, penetration, and pathogenesis in Arabidopsis thaliana. Affinity of spore attachment to root surfaces of A. thaliana, observed microscopically and measured by atomic force microscopy, was reduced by a loss-of-function mutation in the gene encoding the catalytic subunit of FoCPKA. The resulting mutants also failed to penetrate into the vascular system of A. thaliana roots and lost virulence. Even when the mutants managed to enter the vascular system via physically wounded roots, the degree of vascular colonization was significantly lower than that of the corresponding wild-type strain O-685 and no noticeable disease symptoms were observed. The mutants also had reduced vegetative growth and spore production, and their hyphal growth patterns were distinct from those of O-685. Coinoculation of O-685 with an focpkA mutant or a strain nonpathogenic to A. thaliana significantly reduced disease severity and the degree of root colonization by O-685. Several experimental tools useful for studying mechanisms of fungal root pathogenesis are also introduced.  相似文献   
8.
We developed an approach for focused gallium-ion beam scanning electron microscopy with energy filtered detection of backscattered electrons to create near isometric voxels for high-resolution whole cell visualization. Specifically, this method allowed us to create three-dimensional volumes of high-pressure frozen, freeze-substituted Saccharomyces cerevisiae yeast cells with pixel resolutions down to 3 nm/pixel in x, y, and z, supported by both empirical data and Monte Carlo simulations. As a result, we were able to segment and quantify data sets of numerous targeted subcellular structures/organelles at high-resolution, including the volume, volume percentage, and surface area of the endoplasmic reticulum, cell wall, vacuoles, and mitochondria from an entire cell. Sites of mitochondrial and endoplasmic reticulum interconnectivity were readily identified in rendered data sets. The ability to visualize, segment, and quantify entire eukaryotic cells at high-resolution (potentially sub-5 nanometers isotropic voxels) will provide new perspectives and insights of the inner workings of cells.  相似文献   
9.
Delaware's Inland Bays (DIB), USA, are subject to blooms of potentially harmful raphidophytes, including Heterosigma akashiwo. In 2004, a dense bloom was observed in a low salinity tributary of the DIB. Light microscopy initially suggested that the species was H. akashiwo; however, the cells were smaller than anticipated. 18S rDNA sequences of isolated cultures differed substantially from all raphidophyte sequences in GenBank. Phylogenetic analysis placed it approximately equidistant from Chattonella and Heterosigma with only ~96% sequence homology with either group. Here, we describe this marine raphidophyte as a novel genus and species, Viridilobus marinus (gen. et sp. nov.). We also compared this species with H. akashiwo, because both species are superficially similar with respect to morphology and their ecological niches overlap. V. marinus cells are ovoid to spherical (11.4 × 9.4 μm), and the average number of chloroplasts (4 per cell) is lower than in H. akashiwo (15 per cell). Pigment analysis of V. marinus revealed the presence of fucoxanthin, violaxanthin, and zeaxanthin, which are characteristic of marine raphidophytes within the family Chattonellaceae of the Raphidophyceae. TEM and confocal microscopy, however, revealed diagnostic microscopic and ultrastructural characteristics that distinguish it from other raphidophytes. Chloroplasts were in close association with the nucleus and thylakoids were arranged either parallel or perpendicular to the cell surface. Putative mucocysts were identified, but trichocysts were not observed. These features, along with DNA sequence data, distinguish this species from all other raphidophyte genera within the family Chattonellaceae of the Raphidophyceae.  相似文献   
10.
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca2+-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca2+ (i.e., “Ca2+ signature”), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca2+ biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca2+ ([Ca2+]c) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca2+ signature. Furthermore, occurrence of pulsatile Ca2+ signatures was age and development dependent, and major [Ca2+]c transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell–cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca2+-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca2+ signaling across eukaryotic kingdoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号