首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   18篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   9篇
  2005年   4篇
  2004年   13篇
  2003年   6篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   5篇
  1972年   1篇
  1970年   1篇
  1953年   1篇
  1931年   1篇
排序方式: 共有144条查询结果,搜索用时 499 毫秒
1.
2.
To investigate why some species are dioecious and others monoecious, a data set of 14 morphological characters in 106 species ofElatostema was regressed onto mating system using partial multiple regression (controlling for subgeneric classification to avoid spurious associations). Morphology and mating system are significantly related (p = 0.05), and dioecious species tend to have large stipules, woody habit, and large leaves. The correlation of dioecy with large stipules is reported for the first time, but this character, like woodiness, is an indicator of plant size, suggesting a functional relationship of large plants (of the under-canopy) with dioecy.  相似文献   
3.
Islands: stability, diversity, conservation   总被引:1,自引:0,他引:1  
Islands present both a diversity and a stability paradox. They are often highly species-poor but have considerable biological interest in terms of extraordinary endemic genera and taxonomically isolated groups. They appear to be stable, as in some cases these organisms have persisted for many millions of years, and having an oceanic climate, extreme climatic events may be comparatively rare. However, when subject to extrinsic (anthropogenic) disturbance they do not appear to be stable, but often suffer catastrophic ecological change. These apparent paradoxes are resolved when it is realized that all these features are consequences of the same island characteristics: biotic isolation and oceanicity. As a result of these two characteristics, far oceanic islands are quantitatively different from continental systems in the nature of their ecological processes, which appear to give rise to an extreme punctuated equilibrium model of evolutionary change. Endemics may be ancient relict endemics displaying prolonged stasis and persistence, or products of adaptive radiation representing rapid punctuational events. A process-based definition of a relict endemic (palaeoendemic) is one whose founding lineage (i.e. the original continental source taxon) has not left any descendents. A corollary of this definition is that the time of divergence between an endemic and its continental sister-group should predate the colonization of the island by the now endemic lineage. An example is Dicksonia arborescens which has been on St Helena for at least 9 Myrs and no longer occurs in the likely source area of Africa. These relict endemics, frequent on islands, are important as the last remnants of tranches of biodiversity that have vanished elsewhere. Island conservation strategies require an integrated understanding of both sides of the diversity and stability paradox so that both island processes and island organisms can be conserved.  相似文献   
4.
Using a battery of seven lectin-ferritin conjugates as probes for cell surface glycoconjugates, we have studied the pattern of plasmalemmal differentiation of cells in the embryonic rat pancreas from day 15 in utero to the early postpartum stage. Our results indicate that differentiation of plasmalemmal glycoconjugates on acinar, endocrine, and centroacinar cells is temporally correlated with development and is unique for each cell type, as indicated by lectin-ferritin binding. Specifically, (a) expression of adult cell surface saccharide phenotype can be detected on presumptive acinar cells as early as 15 d in utero, as indicated by soybean agglutinin binding, and precedes development of intracellular organelles characteristic of mature acinar cells; (b) maturation of the plasmalemma of acinar cells is reached after intracellular cytodifferentiation is completed, as indicated by appearance of Con A and fucoselectin binding sites only at day 19 of development; conversely, maturation of the endocrine cell plasmalemma is accompanied by "loss" (masking) of ricinus communis II agglutinin receptors; and (c) binding sites for fucose lectins and for soybean agglutinin are absent on endocrine and centroacinar cells at all stages examined. We conclude that acinar, centroacinar, and endocrine cells develop from a common progenitor cell(s) whose plasmalemmal carbohydrate composition resembles most closely that of the adult centroacinar cell. Finally, appearance of acinar lumina beginning at approximately 17 d in utero is accompanied by differenetiation of apical and basolateral plasmalemmal domains of epithelial cells, as indicated by enhanced binding of several lectin-ferritin conjugates to the apical plasmalemmal, a pattern that persists from this stage through adult life.  相似文献   
5.
A study was made of the higher alcohols (fusel oils) produced during the Indonesian tapé ketan fermentation using Amylomyces rouxii as the principal mold, alone or in combination with yeasts belonging to genera commonly found in the tapé ketan fermentation (Endomycopsis, Candida, and Hansenula). Total fusel oils increased with length of fermentation. Fusel oils detected in the product distillate included isobutanol and isoamyl and active amyl alcohols. No n-propanol was detected. Isobutanol and isoamyl alcohols were formed in the largest amounts. A. rouxii alone produced nearly the same quantity of fusel oils (total production, 275 mg/liter at 192 h) as it did in combination with Endomycopsis burtonii (total production, 292 mg/liter at 192 h).A. rouxii and Endomycopsis fibuliger produced fusel oils totaling 72 mg/liter at 32 h and 558 mg/liter at 192 h. A. rouxii in combination with Candida yeasts produced somewhat more fusel oils, ranging from 590 to 618 mg/liter at 192 h. A. rouxii in combination with Hansenula yeasts produced the least fusel oils, totaling 143 to 248 mg/liter at 192 h. During the first 36 h, production of fusel oils was higher at 30 and 35 degrees C than at 25 degrees C. At 48 h fusel oil production was slightly higher at 30 degrees C than at 35 degrees C. Beyond 48 h, production of fusel oils was higher at 25 degrees C. A. rouxii in combination with Hansenula anomala and Hansenula subpelliculosa produced considerable ethyl acetate, ranging from 145 to 199 mg/liter at 36 h and 354 to 369 mg/liter at 192 h.  相似文献   
6.
7.
The worldwide spread of a novel influenza A (H1N1) virus in 2009 showed that influenza remains a significant health threat, even for individuals in the prime of life. This paper focuses on the unusually high young adult mortality observed during the Spanish flu pandemic of 1918. Using historical records from Canada and the U.S., we report a peak of mortality at the exact age of 28 during the pandemic and argue that this increased mortality resulted from an early life exposure to influenza during the previous Russian flu pandemic of 1889–90. We posit that in specific instances, development of immunological memory to an influenza virus strain in early life may lead to a dysregulated immune response to antigenically novel strains encountered in later life, thereby increasing the risk of death. Exposure during critical periods of development could also create holes in the T cell repertoire and impair fetal maturation in general, thereby increasing mortality from infectious diseases later in life. Knowledge of the age-pattern of susceptibility to mortality from influenza could improve crisis management during future influenza pandemics.
“The war is over – and I must go” Egon Schiele, 1890–1918.
  相似文献   
8.
9.
Trends in coral cover are widely used to indicate the health of coral reefs but are costly to obtain from field survey over large areas. In situ studies of reflected spectra at the coral surface show that living and recently dead colonies can be distinguished. Here, we investigate whether such spectral differences can be detected using an airborne remote sensing instrument. The Compact Airborne Spectrographic Imager (Itres Research Ltd, Canada) was flown in two configurations: 10 spectral bands with 1-m2 pixels and 6 spectral bands with 0.25-m2 pixels. First, we show that an instrument with 10 spectral bands possesses adequate spectral resolution to distinguish living Porites, living Pocillopora spp., partially dead Porites, recently dead Porites (total colony mortality within 6 months), old dead (>6 months) Porites, Halimeda spp., and coralline red algae when there is no water column to confuse spectra. All substrata were distinguished using fourth-order spectral derivatives around 538 nm and 562 nm. Then, at a shallow site (Tivaru) at Rangiroa Atoll, Tuamotu Archipelago (French Polynesia), we show that live and dead coral can be distinguished from the air to a depth of at least 4 m using first- and fourth-order spectral derivatives between 562–580 nm. However, partially dead and recently dead Porites colonies could not be distinguished from an airborne platform. Spectral differences among substrata are then exploited to predict the cover of reef substrata in ten 25-m2 plots at nearby Motu Nuhi (max depth 8 m). The actual cover in these plots was determined in situ using quadrats with a 0.01-m2 grid. Considerable disparity occurred between field and image-based measures of substrate cover within individual 25-m2 quadrats. At this small scale, disparity, measured as the absolute difference in cover between field and remote-sensing methods, reached 25% in some substrata but was always less than 10% for living coral (99% of which consisted of Porites spp.). At the scale of the reef (all ten 25-m2 quadrats), however, disparities in percent cover between imagery and field data were less than 10% for all substrata and extremely low for some classes (e.g. <3% for living Porites, recently dead Porites and Halimeda). The least accurately estimated substrata were sand and coralline red algae, which were overestimated by absolute values 7.9% and 6.6%, respectively. The precision of sampling was similar for field and remote-sensing methods: field methods required 19 plots to detect a 10% difference in coral cover among three reefs with a statistical power of 95%. Remote-sensing methods required 21 plots. However, it took 1 h to acquire imagery over 92,500 m2 of reef, which represents 3,700 plots of 25 m2 each, compared with 3 days to survey 10 such plots underwater. There were no significant differences in accuracy between 1-m2 and 0.25-m2 image resolutions, suggesting that the advantage of using smaller pixels is offset by reduced spectral information and an increase in noise (noise was observed to be 1.6–1.8 times greater in 0.25-m2 pixels). We show that airborne remote sensing can be used to monitor coral and algal cover over large areas, providing that water is shallow and clear, and that brown fleshy macroalgae are scarce, that depth is known independently (e.g. from sonar survey).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号