首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Floral zygomorphy, the recurring evolution of a successful trait   总被引:10,自引:0,他引:10  
The flowers of the primitive angiosperm plants were radially symmetrical (actinomorphic). Flowers with bilateral symmetry (zygomorphic) evolved in several clades independently as an adaptation to specialized methods of pollination and played an important role in the diversification of flowering plants. In the model species Antirrhinum majus (snapdragon), the related genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) are key in the development of this trait. This raises the question of whether they played a role in the evolution of floral bilateral symmetry. To address this, the evolution of CYC in relation to the evolution of zygomorphy is being investigated. Phylogenetic and functional analyses of CYC-like genes are being carried out in groups either closely related to Antirhinum or in families where zygomorphy evolved as an independent event. In addition, the origin of zygomorphy is being studied by comparing the function of CYC-like genes in species with zygomorphic flowers with their function in species with radially symmetrical flowers.  相似文献   

3.
CYCLOIDEA(CYC)类TCP基因在豆科与玄参科植物中都参与了两侧对称花型的发育,但它们的具体功能有明显的差异。通过在豌豆花瓣中建立农杆菌EHA105介导的瞬时表达系统,观察到豆科植物百脉根和玄参科植物金鱼草的CYC类TCP蛋白亚细胞定位有明显区别。  相似文献   

4.
Yuan Z  Gao S  Xue DW  Luo D  Li LT  Ding SY  Yao X  Wilson ZA  Qian Q  Zhang DB 《Plant physiology》2009,149(1):235-244
Poaceae, one of the largest flowering plant families in angiosperms, evolved distinct inflorescence and flower morphology diverging from eudicots and other monocots. However, the mechanism underlying the specification of flower morphology in grasses remains unclear. Here we show that floral zygomorphy along the lemma-palea axis in rice (Oryza sativa) is partially or indirectly determined by the CYCLOIDEA (CYC)-like homolog RETARDED PALEA1 (REP1), which regulates palea identity and development. The REP1 gene is only expressed in palea primordium during early flower development, but during later floral stages is radially dispersed in stamens and the vascular bundles of the lemma and palea. The development of palea is significantly retarded in the rep1 mutant and its palea has five vascular bundles, which is similar to the vascular pattern of the wild-type lemma. Furthermore, ectopic expression of REP1 caused the asymmetrical overdifferentiation of the palea cells, altering their floral asymmetry. This work therefore extends the function of the TCP gene family members in defining the diversification of floral morphology in grasses and suggests that a common conserved mechanism controlling floral zygomorphy by CYC-like genes exists in both eudicots and the grasses.  相似文献   

5.
6.
CYCLOIDEA (CYC) and DICHOTOMA (DICH) are paralogous genes that determine adaxial (dorsal) flower identity in the bilaterally symmetric flowers of Antirrhinum majus (snapdragon). We show here that the duplication leading to the existence of both CYC and DICH in Antirrhinum occurred before the radiation of the Antirrhineae (the tribe to which snapdragon belongs). We find no additional gene duplications within Antirrhineae. Using explicit codon-based models of evolution in a likelihood framework, we show that patterns of molecular evolution after the duplication that gave rise to CYC and DICH are consistent with purifying selection acting at both loci, despite their known functional redundancy in snapdragon. However, for specific gene regions, purifying selection is significantly relaxed across DICH lineages, relative to CYC lineages. In addition, we find evidence for relaxed purifying selection along the lineage leading to snapdragon in one of two putative functional domains of DICH. A model of selection accounting for the persistence of paralogous genes in the absence of diversifying selection is presented. This model takes into account differences in the degree of purifying selection acting at the two loci and is consistent with subfunctionalization models of paralogous gene evolution.  相似文献   

7.
8.
9.
Zhang W  Kramer EM  Davis CC 《PloS one》2012,7(4):e36033
The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2-like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant-pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program.  相似文献   

10.
11.
Molecular evolution of cycloidea-like genes in Fabaceae   总被引:2,自引:0,他引:2  
The cycloidea (CYC) gene controls floral symmetry in snapdragon (Antirrhinum majus). We investigated the evolution of CYC-like genes in some species of legumes that have zygomorphic flowers. Two to four CYC-like genes were isolated from a single species. The results of NJ and ML analyses indicate that CYC-like genes in legumes group into two monophyletic clades; one group consists of eight CYC-like genes (Clade 1) and the other contains three CYC-like genes and TB1 of maize (Clade 2). These phylogenetic trees and the Shimodaira–Hasegawa test suggest that Clade 1 is a sister of the original CYC group (Clade 3). Moreover, the result of the GeneTree analysis showed that the CYC-like genes experienced repeated duplication events during the evolution of legumes. We herein speculate as to the role of CYC-like genes in legumes and discuss the evolutionary processes that these genes have undergone. Current address (Jun Yokoyama and Masayuki Maki): Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan  相似文献   

12.
Inflorescence and floral development of three species of Indigofera (Leguminosae-Papilionoideae), I. lespedezioides, I. spicata, and I. suffruticosa, were investigated and compared with that of other papilionoid groups, especially with members of the recently circumscribed Millettioid clade, which was merged as sister to Indigofereae in a recent cladistic analysis. Although Indigofera is a genus of special interest, because of its great richness in species and its economic importance, few studies have been made of floral development in the genus or in Indigofereae as a whole. Flower buds and inflorescences were analysed at several stages of development in the three species. Our results confirmed that Indigofera species bear a usual inflorescence type among legumes, the raceme, which comprises flowers initiated in acropetal succession, each with a subtending bract and no bracteoles initiated. The inception of the floral organs is as follows: sepals (5), petals (5), carpel (1), outer stamens (5), and, finally, inner stamens (5). Organ initiation in the sepal, petal, and both stamen whorls is unidirectional, from the abaxial side; the carpel cleft is adaxial. The vexillum is larger than other petals at maturity, covering the keels, which are fused edge-to-edge. Nine filaments are fused to form an adaxially open sheath, and the adaxial stamen of the inner whorl remains free (diadelphous androecium) in the mid-stage of development. Most of the infra-generic differences occurred in the later stages of development. Data on floral development in Indigofera obtained here were also compared with those from other members of Papilionoideae. This comparison showed that the early expression of zygomorphy is shared with other members of the Millettioid clade but is rarely found in other papilionoids, corresponding to a hypothetically morphological synapomorphy in the pair Indigoferae plus millettioids.  相似文献   

13.
14.
Southern blot analysis of genomic cattle DNA was carried out using murine cDNA probes representing the Tcp-1 gene of the t complex. Excellent cross-hybridization was obtained, and the probes apparently hybridized to at least two bovine TCP1 genes. Two independent restriction fragment length polymorphisms, each composed of two allelic variants, were detected; the inheritance of the restriction fragment length polymorphisms was confirmed by family data. One of the restriction fragment length polymorphisms, designated TCP1B, was evidently due to a gene duplication and was revealed with any restriction enzyme used. The duplication was found in three different cattle breeds investigated. Family segregation data indicated that TCP1B is linked to major histocompatibility complex genes. The result was consistent with close linkage to the major histocompatibility complex class II DO beta gene, whereas a fairly high recombination frequency was indicated between TCP1B/DO beta and other major histocompatibility complex genes. The result assigns TCP1B to a bovine linkage group previously comprising major histocompatibility complex class I and class II genes and blood group locus M. The similarity between this linkage group and parts of mouse chromosome 17 (t-H-2) and human chromosome 6 (TCP1-HLA) is discussed.  相似文献   

15.
The shift from zygomorphy to actinomorphy has been intensively studied in molecular genetic model organisms. However, it is still a key challenge to explain the great morphological diversity of derived actinomorphy in angiosperms, since different underlying mechanisms may be responsible for similar external morphologies. Bournea (Gesneriaceae) is of particular interest in addressing this question, as it is a representative of primarily derived actinomorphy characteristic of a unique developmental transition from zygomorphy to actinomorphic flowers at anthesis. Using RNA in situ hybridization, the expression patterns were investigated of three different Bournea orthologues of TCP and MYB genes that have been shown to control floral symmetry in model species. Here, it is shown that the initial zygomorphic pattern in Bournea is likely a residual zygomorphy resulting from conserved expression of the adaxial (dorsal) identity gene BlCYC1. As a key novel event, the late downregulation of BlCYC1 and BlRAD and the correlative changes in the late specific expression of the abaxial (ventral) identity gene BlDIV should be responsible for the origin of the derived actinomorphy in Bournea. These results further indicate that there might be diverse pathways in the origin and evolution of derived actinomorphy through modifications of pre-existing zygomorphic developmental programs under dynamics of regulatory networks.  相似文献   

16.
V. A. Barcus  AJB. Titheradge    N. E. Murray 《Genetics》1995,140(4):1187-1197
In enteric bacteria three discrete families of type I restriction and modification systems (IA, IB and ID) are encoded by alleles of the serB-linked hsd locus. Probes specific for each of the three familes were used to monitor the distribution of related systems in 37 of the 72 wild-type Escherichia coli strains comprising the ECOR collection. All 25 members of group A in this collection were screened; 12 were probe-positive, nine have hsd genes in the IA family, two in the IB and one in the ID. Twelve strains, representing all groups other than A, were screened; five were probe-positive, one has hsd genes in the IA family, one in the IB and three in the ID. The type ID genes are the first representatives of this family in E. coli, the probe-negative strains could have alternative families of hsd genes. The type IA and IB systems added at least five new specificites to the five already identified in natural isolates of E. coli. The distribution of alleles is inconsistent with the dendrogram of the bacterial strains derived from other criteria. This discrepancy and the dissimilar coding sequences of allelic hsd genes both imply lateral transfer of hsd genes.  相似文献   

17.
在已知GCYC基因部分序列基础上, 通过改进的mTAIL-PCR方法克隆非洲紫罗兰Saintpaulia ionantha两侧对称栽培种中CYC类基因的5′未知序列, 并进而从两侧与辐射对称栽培种中分离得到苦苣苔科Gesneriaceae中第一组完整基因: SiCYC1A与SiCYC1B。对以上基因的核酸和氨基酸序列比较发现, SiCYC1A与SiCYC1B序列同源性很高, 均含有完整的功能调控区域(即TCP domain和R domain)并与模式植物金鱼草Antirrhinum majus中CYC基因同源。因此, 这两个基因应具有正常功能, 是功能上互补的冗余基因。令人意外的是在辐射对称花栽培品种中的这两个基因和两侧对称花栽培品种中对应基因的序列完全相同。经过对金鱼草以及相关类群辐射对称花突变体中CYC类基因序列的比较分析, 推论在非洲紫罗兰中, SiCYC1A与SiCYC1B基因可能受上游未知的共同调控因子调控, 该调控因子的改变是导致栽培品种中花对称性发生变化的主要原因。另外, 对改进后的TAIL-PCR(mTAIL-PCR)的方法和过程进行了详细叙述, 并对其技术特征和优势开展了简单的论述。  相似文献   

18.
19.
The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to specify zygomorphy in different species within the Asteraceae.  相似文献   

20.
The por gene of Neisseria gonorrhoeae encodes the Protein I porin responsible for serovar specificity. In this study the por genes have been sequenced from clinical isolates which exhibited anomalous serovar reactivity. One group of `intermediate' strains differed significantly from both Protein IA and IB strains, were more closely related to IA but appeared to represent a distinct class of Protein I. Another strain was closely related to Protein IB of serovar IB-6 but contained a deletion of six amino acids in surface exposed loop 6 which removed epitopes recognised by IB specific monoclonal antibodies. The third group of strains, which reacted with both IA and IB specific monoclonal antibodies, expressed hybrid Protein I molecules containing both IA and IB epitopes. These strains appeared to originate from a double crossover between Proteins IA and IB with the amino and carboxy terminal residues homologous to IB while the surface exposed loop 6 demonstrated close homology to IA. This is the first demonstration of naturally occurring gonococci expressing a hybrid Protein IA/IB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号