首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   40篇
  2018年   4篇
  2017年   5篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   13篇
  2010年   10篇
  2009年   13篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   13篇
  2004年   6篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   9篇
  1998年   12篇
  1997年   11篇
  1996年   10篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   10篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   4篇
  1968年   1篇
  1967年   1篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
  1955年   1篇
  1939年   1篇
  1931年   1篇
排序方式: 共有287条查询结果,搜索用时 31 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
In previous studies, we have demonstrated the differences in thermotolerance induced by heat and sodium arsenite (Lee et al., Radiat. Res. 121, 295-303, 1990). In this study, we investigated whether a 26-kDa protein might play an important role in evincing these differences. Chinese hamster ovary (CHO) cells treated for either 1 h with 100 microM sodium arsenite (ARS) or 10 min at 45.5 degrees C became thermotolerant to a test heat treatment at 43 degrees C administered 6 or 12 h later, respectively. After the test heating at 43 degrees C for 1.5 h, the level of 26-kDa protein in the nucleus was decreased by 92% in nonthermotolerant cells, 78% in ARS-induced thermotolerant cells, and 3% in heat-induced thermotolerant cells. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) after ARS treatment eliminated thermotolerance to 43 degrees C and delayed restoration of the 26-kDa protein in the nucleus. In contrast, CHM neither prevented the development of thermotolerance nor inhibited the restoration of the 26-kDa protein in heat-induced thermotolerant cells. However, when cells were exposed to cold (4 degrees C), immediately after initial heating, restoration of the 26-kDa protein and development of thermotolerance did not occur. These results demonstrate a good correlation between the restoration and/or the presence of this 26-kDa protein and the development of protein synthesis-independent thermotolerance.  相似文献   
3.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   
4.
5.
Previous studies suggested that a 26 kDa protein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. To determine if this phenomenon was universal, four mammalian cell lines, viz., CHO, HA-1, murine Swiss 3T3, and human HeLa, were studied. Cells were heated at 42 degrees C, and the level of 26 kDa protein in the nucleus was measured, together with clonogenic survival and protein synthesis. The results demonstrated that 1) the 26-kDa protein was present in the four different cell lines, and 2) the level of the 26 kDa protein in their nuclei was decreased by 30-70% after heating at 42 degrees C for 1 hr. However, restoration of this protein occurred along with development of chronic thermotolerance. The protein synthesis inhibitor cycloheximide (10 micrograms/ml) neither inhibited the development of chronic thermotolerance nor affected the restoration of the 26 kDa protein in the nucleus. In fact, this drug protected cells from hyperthermic killing and heat-induced reduction of 26 kDa protein in the nucleus. Heat sensitizers, quercetin (0.1 mM), 3,3'-dipentyloxacarbocyanine iodide (DiOC5[3]: 5 micrograms/ml), and stepdown heating (45 degrees C-10 min----42 degrees C), potentiated hyperthermic killing and inhibited or delayed the restoration of the 26 kDa protein to the nucleus. These results support a correlated, perhaps causal relationship between the restoration of the 26 kDa protein and chronic thermotolerance development in four different mammalian cell lines.  相似文献   
6.
We investigated the role of B-crystallin expression in the development of thermotolerance in murine L929 cells. An initial heat-shock of 10 min at 45°C induced thermotolerance in these cells to a heat challenge at 45°C administered 24 h later. The thermotolerance ratio at 10–1 isosurvival was 1.7. Expression of B-crystallin gene was not detected during the 24 h incubation at 37°C following heat shock by either northern or western blots. In contrast, inducible HSP70 synthesis was observed during this time period. Thus, this cell line provided an unique system in which to examine the effects of transfected B-crystallin on thermoresistance and thermotolerance. Cells stably transfected with B-crystallin under the control of an inducible promoter did not show a significant increase in the ability to develop thermotolerance. However, a stably transfected L929 clone expressing high levels of constitutive B-crystallin exhibited an approximately 50% increase in thermal resistance over parental and control cells. Though expression of B-crystallin is not requisite for the development of thermotolerance in L929 cells, overexpression of transfected B-crystallin can contribute to increased thermoresistance.  相似文献   
7.
Previous reports have described antigens that are recognized on human melanoma cells by autologous cytolytic T lymphocytes (CTL). The genes coding for a number of these antigens have been identified. Here we report the cloning of a gene that codes for an antigen recognized by autologous CTL on a human renal carcinoma cell line. This antigen is presented byHLA-B7 and is encoded by a new gene that we have namedRAGE1. No expression ofRAGE1 was found in normal tissues other than retina. RAGE1 expression was found in only one of 57 renal cell carcinoma samples, and also in some sarcomas, infiltrating bladder carcinomas, and melanomas. This represents the first identification of an antigen recognized by autologous CTL on a renal tumor.  相似文献   
8.
9.
Hyperthermia increases levels of nuclear-associated proteins in a manner that correlates with cell killing. If the increase in nuclear-associated proteins represents a lethal lesion then treatments that protect against killing by heat should reduce and/or facilitate the recovery of levels of the proteins in heated cells. This hypothesis was tested using three heat protection treatments: cycloheximide, D2O, and thermotolerance. All three treatments reduced levels of the proteins measured immediately following hyperthermia at 43.0 or 45.5 degrees C, with the greatest reduction occurring at 43.0 degrees C. In addition to reducing the proteins, thermotolerance facilitated the recovery of the proteins to control levels following hyperthermia. Thus thermotolerance may protect cells by both reducing the initial heat damage and facilitating recovery from that damage. Cycloheximide and D2O did not facilitate recovery of nuclear-associated proteins, suggesting that their protection against cytotoxicity related to the proteins resulted solely from their reduction of increases in levels of the proteins. All three treatments have been shown to stabilize cellular proteins against thermal denaturation. The results of this study suggest that the increase in nuclear-associated proteins may result from thermally denatured proteins adhering to the nucleus and that it is the ability of cycloheximide, D2O, and thermotolerance to thermostabilize proteins that reduces the increase in levels of the proteins within heated cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号