首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   30篇
  2024年   3篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   9篇
  2019年   5篇
  2018年   15篇
  2017年   9篇
  2016年   11篇
  2015年   22篇
  2014年   23篇
  2013年   25篇
  2012年   26篇
  2011年   18篇
  2010年   11篇
  2009年   13篇
  2008年   21篇
  2007年   20篇
  2006年   12篇
  2005年   7篇
  2004年   12篇
  2003年   11篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有323条查询结果,搜索用时 15 毫秒
1.
A laboratory calibration study was undertaken with juvenile Sepia officinalis (80-85 g initial wet weight) to investigate the effects of different food rations and different starving intervals on RNA/dry weight (DW) ratios and RNA/DNA ratios in cephalopod mantle muscle at two different temperatures. The digestive gland index was also used as an additional indicator of recent growth. High food rations and low temperature went along with high RNA/DW ratios and high RNA/DNA ratios. Starving resulted in a linear decline in growth performance and a concomitant decrease in RNA/DW and RNA/DNA ratio, with RNA/DNA ratios representing the growth data better. RNA/DNA ratios decreased faster at higher temperatures. A fluorimetric assay for nucleic acid analysis was optimized for cephalopod mantle tissues and yielded reproducible RNA/DNA ratios with a relative variance below 10%. Thus, it may be possible to use this estimator of recently encountered feeding regime for the evaluation of mortality rates of early teuthid paralarvae to eventually support stock management. Also, log relative digestive gland weight showed a strong relationship with starving time, but, surprisingly, not with temperature. Data from the two temperatures analyzed could be combined to form a common regression line of relative digestive gland index with starving time. This indicator for recent growth might be especially suitable for large specimens with a well-developed digestive gland.  相似文献   
2.
3.
The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray‐finned fishes is the gas bladder, an air‐filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe‐finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral‐to‐dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray‐finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.  相似文献   
4.
Extreme heat wave events are now causing ecosystem degradation across marine ecosystems. The consequences of this heat‐induced damage range from the rapid loss of habitat‐forming organisms, through to a reduction in the services that ecosystems support, and ultimately to impacts on human health and society. How we tackle the sudden emergence of ecosystem‐wide degradation has not yet been addressed in the context of marine heat waves. An examination of recent marine heat waves from around Australia points to the potential important role that respite or refuge from environmental extremes can play in enabling organismal survival. However, most ecological interventions are being devised with a target of mid to late‐century implementation, at which time many of the ecosystems, that the interventions are targeted towards, will have already undergone repeated and widespread heat wave induced degradation. Here, our assessment of the merits of proposed ecological interventions, across a spectrum of approaches, to counter marine environmental extremes, reveals a lack preparedness to counter the effects of extreme conditions on marine ecosystems. The ecological influence of these extremes are projected to continue to impact marine ecosystems in the coming years, long before these interventions can be developed. Our assessment reveals that approaches which are technologically ready and likely to be socially acceptable are locally deployable only, whereas those which are scalable—for example to features as large as major reef systems—are not close to being testable, and are unlikely to obtain social licence for deployment. Knowledge of the environmental timescales for survival of extremes, via respite or refuge, inferred from field observations will help test such intervention tools. The growing frequency of extreme events such as marine heat waves increases the urgency to consider mitigation and intervention tools that support organismal and ecosystem survival in the immediate future, while global climate mitigation and/or intervention are formulated.  相似文献   
5.
Azole-resistant environmental Aspergillus fumigatus presents a threat to public health but the extent of this threat in Southeast Asia is poorly described. We conducted environmental surveillance in the Mekong Delta region of Vietnam, collecting air and ground samples across key land-use types, and determined antifungal susceptibilities of Aspergillus section Fumigati (ASF) isolates and azole concentrations in soils. Of 119 ASF isolates, 55% were resistant (or non-wild type) to itraconazole, 65% to posaconazole and 50% to voriconazole. Azole resistance was more frequent in A. fumigatus sensu stricto isolates (95%) than other ASF species (32%). Resistant isolates and agricultural azole residues were overrepresented in samples from cultivated land. cyp51A gene sequence analysis showed 38/56 resistant A. fumigatus sensu stricto isolates carried known resistance mutations, with TR34/L98H most frequent (34/38).  相似文献   
6.
7.
Evidence from numerous Pan‐African savannah mammals indicates that open‐habitat refugia existed in Africa during the Pleistocene, isolated by expanding tropical forests during warm and humid interglacial periods. However, comparative data from other taxonomic groups are currently lacking. We present a phylogeographic investigation of the African puff adder (Bitis arietans), a snake that occurs in open‐habitat formations throughout sub‐Saharan Africa. Multiple parapatric mitochondrial clades occur across the current distribution of B. arietans, including a widespread southern African clade that is subdivided into four separate clades. We investigated the historical processes responsible for generating these phylogeographic patterns in southern Africa using species distribution modelling and genetic approaches. Our results show that interior regions of South Africa became largely inhospitable for B. arietans during glacial maxima, whereas coastal and more northerly areas remained habitable. This corresponds well with the locations of refugia inferred from mitochondrial data using a continuous phylogeographic diffusion model. Analysis of data from five anonymous nuclear loci revealed broadly similar patterns to mtDNA. Secondary admixture was detected between previously isolated refugial populations. In some cases, this is limited to individuals occurring near mitochondrial clade contact zones, but in other cases, more extensive admixture is evident. Overall, our study reveals a complex history of refugial isolation and secondary expansion for puff adders and a mosaic of isolated refugia in southern Africa. We also identify key differences between the processes that drove isolation in B. arietans and those hypothesized for sympatric savannah mammals.  相似文献   
8.
Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH—based for the first time on pH time-series measurements within a kelp forest—would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ13C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.  相似文献   
9.
10.
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号