首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   41篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   16篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   10篇
  2006年   3篇
  2005年   11篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   13篇
  2000年   7篇
  1999年   14篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
1.
Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20‐ to 25‐fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide‐activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl‐Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   
2.
The three-dimensional reconstruction of the connector of bacteriophage phi 29 has been obtained from tilt series of negatively stained tetragonal ordered aggregates under low-dose conditions and up to a resolution of (1/1.8) nm-1. These connectors are built up as dodecamers of only one structural polypeptide (p10). Two connectors form the crystal unit cell, each one facing in the opposite direction with respect to the plane of the crystal and partially overlapping. The main features of the two connectors that build the unit cell were essentially the same, although they were negatively stained in slightly different ways, probably due to their situations with respect to the carbon-coated support grid. The main features of the phi 29 connector structure revealed by this three-dimensional reconstruction are: the existence of two clearly defined domains, one with a diameter of around 14 nm and the other narrower (diameter approximately equal to 7.5 nm); an inner hole running all along the structure (around 7 to 8 nm in height) with a cylindrical profile and an average diameter of 4 nm; a general 6-fold symmetry along the whole structure and a 12-fold one in the wider domain; a clockwise twist of the more contrasted regions of both domains from the narrower towards the wider domain (the direction of DNA encapsidation). These features are compatible with an active role for the connector in the process of DNA packaging.  相似文献   
3.
Levels of mitochondrial DNA (mtDNA) sequence divergence between species within each of several avian (Anas, Aythya, Dendroica, Melospiza, and Zonotrichia) and nonavian (Lepomis and Hyla) vertebrate genera were compared. An analysis of digestion profiles generated by 13-18 restriction endonucleases indicates little overlap in magnitude of mtDNA divergence for the avian versus nonavian taxa examined. In 55 interspecific comparisons among the avian congeners, the fraction of identical fragment lengths (F) ranged from 0.26 to 0.96 (F = 0.46), and, given certain assumptions, these translate into estimates of nucleotide sequence divergence (p) ranging from 0.007 to 0.088; in 46 comparisons among the fish and amphibian congeners, F values ranged from 0.00 to 0.36 (F = 0.09), yielding estimates of P greater than 0.070. The small mtDNA distances among avian congeners are associated with protein-electrophoretic distances (D values) less than approximately 0.2, while the mtDNA distances among assayed fish and amphibian congeners are associated with D values usually greater than 0.4. Since the conservative pattern of protein differentiation previously reported for many avian versus nonavian taxa now appears to be paralleled by a conservative pattern of mtDNA divergence, it seems increasingly likely that many avian species have shared more recent common ancestors than have their nonavian taxonomic counterparts. However, estimates of avian divergence times derived from mtDNA- and protein-calibrated clocks cannot readily be reconciled with some published dates based on limited fossil remains. If the earlier paleontological interpretations are valid, then protein and mtDNA evolution must be somewhat decelerated in birds. The empirical and conceptual issues raised by these findings are highly analogous to those in the long-standing debate about rates of molecular evolution and times of separation of ancestral hominids from African apes.   相似文献   
4.
5.
In order to investigate the role of two free radical detoxificant enzymes in patients with aging brain disorders, superoxide dismutase (SOD) and catalase (CAT) activities have been measured in blood from male and female human patients of different ages with several types of aging brain disorders. When compared with activities in the normal population, we have detected: 1) SOD and CAT activities are decreased in patients with Parkinson disease. 2) SOD activity seems to be normal and CAT activity is decreased in patients with dementia. 3) In the patients with stroke, SOD activity is normal, while CAT activity is decreased. SOD activity was measured in red blood cells using the Minami and Yoshikawa method. CAT activity was measured in hemolysates by the method of Aebi. We can conclude that SOD and CAT activities in patients with Parkinson disease are decreased.  相似文献   
6.
The effect of mutations in the cistrons coding for the phage structural proteins has been studied by analyzing the phage-related structures accumulated after restrictive infection. Infection with susmutants in cistron 8, lacking both the major head and the fiber protein, does not produce any phage-related structure, suggesting a single route for the assembly of phage phi29; infection with ts mutants in this cistron produces isometric particles. Mutants is cistron 9, coding for the tail protein, TP1, produce DNA-free prolate heads with an internal core; these particles are abortive and contain the head proteins HPO, HP1 and HP3, the upper collar protein NP2 and the nonstructural proteins p7, p15 and p16. Mutants in cistron 10, coding for the upper collar protein, NP2, produce DNA-free isometric heads also with an internal core; they contain the head proteins and the nonstructural protein p7, suggesting that this protein forms the internal core. Mutants in cistrons 11 and 12, coding for the lower collar protein, NP3, and the neck appendages, NP1, respectively, give rise to the formation of DNA-containing normal capsids and DNA-free prolate particles, more rounded at the corners than the normal capsids and with an internal core; the DNA-containing 11-particles are formed by the head proteins and the upper collar protein; the DNA-free 11-particles contain, besides these proteins, the nonstructural protein p7 and a small amount of proteins p15 and 16. The DNA-containing 12-particles have all the normal phage structural proteins except the neck appendages, formed by protein NP1; the DNA-free particles are similar to the DNA-free 11-particles. After restricitive infection mutant sus14(1241) has a delayed lysis phenotype and produces a phage burst higher than normal, after artificial lysis. It produces DNA-containing particles, identical to wild-type phage, which have all the normal phage structural proteins, and DNA-free prolate particles, more rounded at the corners than the final phage particles and with an internal core; the last particles contain the same proteins as the DNA-free 11 or 12-particles. These particles could represent a prohead state, ready for DNA encapsulation. None of the DNA-containing particles have the nonstructural proteins p7, p15 or p16, suggesting that these proteins are released from the proheads upon DNA encapsulation.  相似文献   
7.
Human insulin receptor (HIR) is expressed in two isoforms which differ in the C-terminal end of the alpha-subunit (HIR-A = -12 aa, HIR-B = +12 aa). We studied internalization kinetics of HIR-A and HIR-B in Rat1 fibroblasts. Internalized receptors were quantified by 125I-insulin binding after cell trypsinisation and solubilization, surface receptors were determined by 125I-insulin binding to intact cells and by chemical crosslinking with B26-125I-insulin. HIR-A and HIR-B show different kinetics of receptor internalization. While in HIR-A cells the maximum of internalization (approx. 65% of total) is reached after 10 min followed by a high recycling rate (approx. 80% of internalized receptors after 20 min), the internalization in HIR-B cells reaches a maximum (approx. 60% of total) after 15 min without detectable recycling within 30 min. The data show that the different alpha-subunits of both receptor types determine different velocities of internalization and determine whether a fast recycling occurs.  相似文献   
8.
The vaccinia virus (VV) A10L gene codes for a major core protein, P4a. This polypeptide is synthesized at late times during viral infection and is proteolytically cleaved during virion assembly. To investigate the role of P4a in the virus life cycle and morphogenesis, we have generated an inducer-dependent conditional mutant (VVindA10L) in which expression of the A10L gene is under the control of the Escherichia coli lacI operator/repressor system. Repression of the A10L gene severely impairs virus growth, as observed by both the inability of the virus to form plaques and the 2-log reduction of viral yields. This defect can be partially overcome by addition of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG). Synthesis of viral proteins other than P4a occurred, although early shutoff of host protein synthesis and expression of viral late polypeptides are clearly delayed, both in the absence and in the presence of IPTG, compared with cells infected with the parental virus. Viral DNA replication and concatemer resolution appeared to proceed normally in the absence of the A10L gene product. In cells infected with VVindA10L in the absence of the inducer virion assembly is blocked, as defined by electron microscopy. Numerous spherical immature viral particles that appear devoid of dense viroplasmic material together with highly electron-dense regular structures are abundant in VVindA10L-infected cells. These regularly spaced structures can be specifically labeled with anti-DNA antibodies as well as with a DNase-gold conjugate, indicating that they contain DNA. Some images suggest that these DNA structures enter into spherical immature viral particles. In this regard, although it has not been firmly established, it has been suggested that DNA uptake occurs after formation of spherical immature particles. Overall, our results showed that P4a and/or its cleaved products are essential for the correct assembly of the nucleoprotein complex within immature viral particles.  相似文献   
9.
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.  相似文献   
10.
Protein p6 of Bacillus subtilis phage phi29 has been described as a histone-like protein, playing a role in genome organization and compaction, on the basis of its high intracellular abundance, its pleiotropic effect, and its ability to bind and highly compact the whole phi29 DNA in vitro. Protein p6 forms large multimeric nucleoprotein complexes in which a right-handed superhelical DNA wraps toroidally around the protein core. Analytical ultracentrifugation analysis, at the concentration estimated in vivo (at least 1 mM), showed that protein p6 self-associates into elongated oligomers, suggesting that, in the absence of DNA, the protein could form a scaffold for DNA binding. In this work we have studied the structure of these oligomers by transmission electron microscopy and image processing. The results show that protein p6 aggregates into crooked-shaped oligomers, compatible with a helical structure. The oligomers could interact head-to-tail to form doughnut-shaped structures or they could grow into right-handed double-helical filaments by a nucleation-dependent polymerization process. The dimensions of the crooked-shaped structures are in agreement with that of the DNA in the nucleoprotein complex previously described. We propose that the crooked-shaped structures could act as a scaffold imposing the right-handed path followed by the DNA, and thus it could be considered a non-transient DNA chaperone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号