首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1934年   1篇
  1927年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
1.
2.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   
3.
Based on the prediction that histone lysine demethylases may contain the JmjC domain, we examined the methylation patterns of five knock-out strains (ecm5Delta, gis1Delta, rph1Delta, jhd1Delta, and jhd2Delta (yjr119cDelta)) of Saccharomyces cerevisiae. Mass spectrometry (MS) analyses of histone H3 showed increased modifications in all mutants except ecm5Delta. High-resolution MS was used to unequivocally differentiate trimethylation from acetylation in various tryptic fragments. The relative abundance of specific fragments indicated that histones K36me3 and K4me3 accumulate in rph1Delta and jhd2Delta strains, respectively, whereas both histone K36me2 and K36me accumulate in gis1Delta and jhd1Delta strains. Analyses performed with strains overexpressing the JmjC proteins yielded changes in methylation patterns that were the reverse of those obtained in the complementary knock-out strains. In vitro enzymatic assays confirmed that the JmjC domain of Rph1 specifically demethylates K36me3 primarily and K36me2 secondarily. Overexpression of RPH1 generated a growth defect in response to UV irradiation. The demethylase activity of Rph1 is responsible for the phenotype. Collectively, in addition to Jhd1, our results identified three novel JmjC domain-containing histone demethylases and their sites of action in budding yeast S. cerevisiae. Furthermore, the methodology described here will be useful for identifying histone demethylases and their target sites in other organisms.  相似文献   
4.

Introduction  

Recently an association between a genetic variation in TRAF1/C5 and mortality from sepsis or cancer was found in rheumatoid arthritis (RA). The most prevalent cause of death, cardiovascular disease, may have been missed in that study, since patients were enrolled at an advanced disease stage. Therefore, we used an inception cohort of RA patients to investigate the association between TRAF1/C5 and cardiovascular mortality, and replicate the findings on all-cause mortality. As TRAF1/C5 associated mortality may not be restricted to RA, we also studied a large cohort of non-RA patients.  相似文献   
5.
Intervention with mesenchymal stem cells (MSCs) represents a promising therapeutic tool in treatment-refractory autoimmune diseases. A new report by Schurgers and colleagues in a previous issue of Arthritis Research & Therapy sheds novel mechanistic insight into the pathways employed by MSCs to suppress T-cell proliferation in vitro, but, at the same time, indicates that MSCs do not influence T-cell reactivity and the disease course in an in vivo arthritis model. Such discrepancies between the in vitro and in vivo effects of potent cellular immune modulators should spark further research and should be interpreted as a sign of caution for the in vitro design of MSC-derived interventions in the setting of human autoimmune diseases.  相似文献   
6.

Background

Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides.

Results

The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered.

Conclusions

A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.  相似文献   
7.
Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors.  相似文献   
8.

Introduction  

Mast cells have been implicated to play a functional role in arthritis, especially in autoantibody-positive disease. Among the cytokines involved in rheumatoid arthritis (RA), IL-17 is an important inflammatory mediator. Recent data suggest that the synovial mast cell is a main producer of IL-17, although T cells have also been implicated as prominent IL-17 producers as well. We aimed to identify IL-17 expression by mast cells and T cells in synovium of arthritis patients.  相似文献   
9.
α-Isopropylmalate synthase (α-IPMS) catalyzes the metal-dependent aldol reaction between α-ketoisovalerate (α-KIV) and acetyl-coenzyme A (AcCoA) to give α-isopropylmalate (α-IPM). This reaction is the first committed step in the biosynthesis of leucine in bacteria. α-IPMS is homodimeric, with monomers consisting of (β/α)(8) barrel catalytic domains fused to a C-terminal regulatory domain, responsible for binding leucine and providing feedback regulation for leucine biosynthesis. In these studies, we demonstrate that removal of the regulatory domain from the α-IPMS enzymes of both Neisseria meningitidis (NmeIPMS) and Mycobacterium tuberculosis (MtuIPMS) results in enzymes that are unable to catalyze the formation of α-IPM, although truncated NmeIPMS was still able to slowly hydrolyze AcCoA. The lack of catalytic activity of these truncation variants was confirmed by complementation studies with Escherichia coli cells lacking the α-IPMS gene, where transformation with the plasmids encoding the truncated α-IPMS enzymes was not able to rescue α-IPMS activity. X-ray crystal structures of both truncation variants reveal that both proteins are dimeric and that the catalytic sites of the proteins are intact, although the divalent metal ion that is thought to be responsible for activating substrate α-KIV is displaced slightly relative to its position in the substrate-bound, wild-type structure. Isothermal titration calorimetry and WaterLOGSY nuclear magnetic resonance experiments demonstrate that although these truncation variants are not able to catalyze the reaction between α-KIV and AcCoA, they are still able to bind the substrate α-KIV. It is proposed that the regulatory domain is crucial for ensuring protein dynamics necessary for competent catalysis.  相似文献   
10.
Enzyme-linked immunosorbent assays (ELISA) proved to be a fast and simple method for the detection of mycotoxins and other undesired contaminants in food and feed. The present study is focused on the optimisation and exploitation of the egg yolk antibody technology in order to develop competitive ELISAs for the detection of mycotoxins in cereals. Due to its importance as one of the most relevant Fusarium mycotoxins, the trichothecene deoxynivalenol (DON) was selected as representative. Chickens were immunised with different protein conjugates performing varying booster intervals. The antibodies were isolated by the poly(ethylene glycol) precipitation method according to Polson. By use of these antibodies an indirect competitive ELISA was developed for the detection of DON. First investigations of naturally contaminated wheat samples showed a good correspondence with results obtained by GC-ECD when calibration in blank wheat extracts was performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号