首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   15篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
1.
The distribution and stability of the cellular tumor antigen p53 were studied in baby rat kidney cells transformed by region E1 sequences of nononcogenic adenovirus (Ad) type 5 (Ad5) or oncogenic type 12 (Ad12). In transformed cells expressing the large E1B T antigen of Ad5, p53 was associated with this T antigen. The complexed proteins were concentrated in a cytoplasmic body, which has been shown to consist of a cluster of 8-nm filaments (A. Zantema et al., Virology 142:44-58, 1985). In transformed cells expressing the E1B region of Ad12, however, no association between the viral large T antigen and p53 was detectable. In the latter case, both proteins were found almost exclusively in the nucleus. The stability of p53 in both Ad5- and Ad12-transformed cells was increased relative to that in primary cells or cells immortalized by the E1A region only. Thus, the increased stability of p53 in Ad-transformed cells is not caused by association with a viral T antigen, but it correlates with expression of E1B and with morphological transformation.  相似文献   
2.
Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.  相似文献   
3.
N-Acylethanolamines (NAEs) are fatty-acid derivatives with potent biological activities in a wide range of eukaryotic organisms. Polyunsaturated NAEs are among the most abundant NAE types in seeds of Arabidopsis thaliana, and they can be metabolized by either fatty acid amide hydrolase (FAAH) or by lipoxygenase (LOX) to low levels during seedling establishment. Here, we identify and quantify endogenous oxylipin metabolites of N-linolenoylethanolamine (NAE 18:3) in Arabidopsis seedlings and show that their levels were higher in faah knockout seedlings. Quantification of oxylipin metabolites in lox mutants demonstrated altered partitioning of NAE 18:3 into 9- or 13-LOX pathways, and this was especially exaggerated when exogenous NAE was added to seedlings. When maintained at micromolar concentrations, NAE 18:3 specifically induced cotyledon bleaching of light-grown seedlings within a restricted stage of development. Comprehensive oxylipin profiling together with genetic and pharmacological interference with LOX activity suggested that both 9-hydroxy and 13-hydroxy linolenoylethanolamides, but not corresponding free fatty-acid metabolites, contributed to the reversible disruption of thylakoid membranes in chloroplasts of seedling cotyledons. We suggest that NAE oxylipins of linolenic acid represent a newly identified, endogenous set of bioactive compounds that may act in opposition to progression of normal seedling development and must be depleted for successful establishment.  相似文献   
4.
While cannabinoids are secondary metabolites synthesized by just a few plant species, N-acylethanolamines (NAEs) are distributed widely in the plant kingdom, and are recovered in measurable, bioactive quantities in many plant-derived products. NAEs in higher plants are ethanolamides of fatty acids with acyl-chain lenghts of C12-C(18) and zero to three C=C bonds. Generally, the most-abundant NAEs found in plants and vertebrates are similar, including NAE 16 : 0, 18 : 1, 18 : 2, and 18 : 3. Like in animal systems, NAEs are formed in plants from N-acylphosphatidylethanolamines (NAPEs), and they are hydrolyzed by an amidase to yield ethanolamine and free fatty acids (FFA). Recently, a homologue of the mammalian fatty acid amide hydrolase (FAAH-1) was identified in Arabidopsis thaliana and several other plant species. Overexpression of Arabidopsis FAAH (AtFAAH) resulted in plants that grew faster, but were more sensitive to biotic and abiotic insults, suggesting that the metabolism of NAEs in plants resides at the balance between growth and responses to environmental stresses. Similar to animal systems, exogenously applied NAEs have potent and varied effects on plant cells. Recent pharmacological approaches combined with molecular-genetic experiments revealed that NAEs may act in certain plant tissues via specific membrane-associated proteins or by interacting with phospholipase D-alpha, although other, direct targets for NAE action in plants are likely to be discovered. Polyunsaturated NAEs can be oxidized via the lipoxygenase pathway in plants, producing an array of oxylipin products that have received little attention so far. Overall, the conservation of NAE occurrence and metabolic machinery in plants, coupled with the profound physiological effects of elevating NAE content or perturbing endogenous NAE metabolism, suggest that an NAE-mediated regulatory pathway, sharing similarities with the mammalian endocannabinoid pathway, indeed exists.  相似文献   
5.
The polarized growth of cells as diverse as fungal hyphae, pollen tubes, algal rhizoids and root hairs is characterized by a highly localized regulation of cell expansion confined to the growing tip. In apically growing plant cells, a tip-focused [Ca2+]c gradient and the cytoskeleton have been associated with growth. Although actin has been established to be essential for the maintenance of elongation, the role of microtubules remains unclear. To address whether the microtubule cytoskeleton is involved in root hair growth and orientation, we applied microtubule antagonists to root hairs of Arabidopsis. In this report, we show that depolymerizing or stabilizing the microtubule cytoskeleton of these apically growing root hairs led to a loss of directionality of growth and the formation of multiple, independent growth points in a single root hair. Each growing point contained a tip-focused gradient of [Ca2+]c. Experimental generation of a new [Ca2+]c gradient in root hairs pre-treated with microtubule antagonists, using the caged-calcium ionophore Br-A23187, was capable of inducing the formation of a new growth point at the site of elevated calcium influx. These data indicate a role for microtubules in regulating the directionality and stability of apical growth in root hairs. In addition, these results suggest that the action of the microtubules may be mediated through interactions with the cellular machinery that maintains the [Ca2+]c gradient at the tip.  相似文献   
6.

Background  

The integration of many aspects of protein/DNA structure analysis is an important requirement for software products in general area of structural bioinformatics. In fact, there are too few software packages on the internet which can be described as successful in this respect. We might say that what is still missing is publicly available, web based software for interactive analysis of the sequence/structure/function of proteins and their complexes with DNA and ligands. Some of existing software packages do have certain level of integration and do offer analysis of several structure related parameters, however not to the extent generally demanded by a user.  相似文献   
7.
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.  相似文献   
8.
Demonstration of prominent actin filaments in the root columella   总被引:8,自引:0,他引:8  
  相似文献   
9.
The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.  相似文献   
10.
H2S+ bacteria responsible for the degradation of sulfur-containing amino acids of fish muscle are currently little used to evaluate the microbiological pal quality of fish. Shewanella putrefaciens greatly predominates in this flora, and was therefore used to define a suitable culture method and medium. Inoculations by the Spiral surface method at 25C, with an incubation of 72h, gave the best counts on a medium containing two sources of sulfur (organic and inorganic) for H2S+ bacteria. The culture medium and the NaCl concentration were determinant in the evaluation of this flora. At present there is no standard medium which meets these requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号