首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   8篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1980年   4篇
  1979年   1篇
排序方式: 共有63条查询结果,搜索用时 421 毫秒
1.
The nitrate reductase (NR, EC 1.6.6.1) activity in root nodules formed by hydrogenase positive (Hup+) and hydrogenase negative (Hup) Rhizobium leguminosarum strains was examined in symbioses with the pea cultivar Alaska ( Pisum sativum L.), Rates of activity were determined by the in vivo assay in nodules from plants that were only N2-dependent or grown in the presence of 2 m M KNO3. The rates varied widely among strains, regardless of the Hup phenotype of the R. leguminosarum strain used for inoculation, but the overall results indicated that nodules formed by Hup strains accumulated more nitrite in the incubation medium than did those with Hup phenotypes. Total plant dry weight and reduced nitrogen content of pea plants grown in the presence of 2 m M KNO3 and inoculated with single Hup+ and Hup R. leguminosarum strains were statistically different among some strains. These observations suggest that the possible advantages derived from the presence of the Hup system on whole plant growth may be counteracted by the higher rates of NR activity in the Hup strains in the R. leguminosarum -pea symbiosis.  相似文献   
2.
The effect of host plant cultivar on H2 evolution by root nodules was examined in symbioses between Pisum sativum L. and selected strains of Rhizobium leguminosarum. Hydrogen evolution from root nodules containing Rhizobium represents the sum of H2 produced by the nitrogenase enzyme complex and H2 oxidized by any uptake hydrogenase present in those bacterial cells. Relative efficiency (RE) calculated as RE = 1 − (H2 evolved in air/C2 H2 reduced) did not vary significantly among `Feltham First,' `Alaska,' and `JI1205' peas inoculated with R. leguminosarum strain 300, which lacks uptake hydrogenase activity (Hup). That observation suggests that the three host cultivars had no effect on H2 production by nitrogenase. However, RE of strain 128C53 was significantly (P ≤ 0.05) greater in symbiosis with cultivar JI1205 than in root nodules of Feltham First. At a similar rate of C2H2 reduction on a whole-plant basis, nearly 24 times more H2 was evolved from the Feltham First/128C53 symbiosis than from the JI1205/128C53 association. Root nodules from the Alaska/128C53 symbiosis had an intermediate RE over the entire study period, which extended from 21 to 36 days after planting. Direct assays of uptake hydrogenase by two methods showed significant (P ≤ 0.05) host cultivar effects on H2 uptake capacity of both strain 128C53 and the genetically related strain 3960. The 3H2 incorporation assay showed that strains 128C53 and 3960 in symbiosis with Feltham First had about 10% of the uptake hydrogenase activity measured in root nodules of Alaska or JI1205. These data are the first demonstration of significant host plant effects on rhizobial uptake hydrogenase in a single plant species.  相似文献   
3.
The aim of the present study was to apply EMG biofeedback as an auxiliary to piano teaching techniques. We studied the changes in integrated electromyographic activity, using the abductor pollicis brevis functioning as an agonist during the teaching of identical selective movements of piano playing in two groups, one with EMG biofeedback and the other following traditional method of instruction. The analysis of variance revealed an increase in the peak amplitude and the relaxation rate values for the biofeedback group. These results have implications for the application of piano playing techniques and reveal EMG biofeedback as an aid in the teaching of thumb attack with the abductor pollicis brevis as agonist.We are grateful for the valuable assistance of Dr. Jaime Vila (Professor of Therapy and Behavioral Modification, Faculty of Psychology, Granada), the cooperation of students at the Juventudes Musicales Music School, Santa Fe and at the Victoria Eugenia Conservatoire, (Granada), the Statistical Analysis Centre of University of Filosofia y Letras de Granada; Professor Enrique Garcia Fernandez-Abasal (Complutense University) for the design of the interface and software.  相似文献   
4.

Aim

In this work, phenotypic analyses of a Ensifer meliloti fixN1 mutant under free‐living and symbiotic conditions have been carried out.

Methods and Results

Ensifer meliloti fixN1 mutant showed a defect in growth as well as in TMPD‐dependent oxidase activity when cells were incubated under micro‐oxic conditions. Furthermore, haem c staining analyses of a fixN1 and a fixP1 mutant identified two membrane‐bound c‐type cytochromes of 27 and 32 kDa, present in microaerobically grown cells and in bacteroids, as the FixO and FixP components of the E. meliloti cbb3 oxidase. Under symbiotic conditions, fixN1 mutant showed a clear nitrogen fixation defect in alfalfa plants that were grown in an N‐free nutrient solution during 3 weeks. However, in plants grown for a longer period, fixNOQP1 copy was not indispensable for symbiotic nitrogen fixation.

Conclusions

The copy 1 of the fixNOQP operon is involved in E. meliloti respiration and growth under micro‐oxic conditions as well as in the expression of the FixO and FixP components of the cbb3 oxidase present in free‐living microaerobic cultures and in bacteroids. This copy is important for nitrogen fixation during the early steps of the symbiosis.

Significance and Impact of the Study

It is the first time that a functional analysis of the E. meliloti copy 1 of the fixNOQP operon is performed. In this work, the cytochromes c that constitute the cbb3 oxidase operating in free‐living micro‐oxic cultures and in bacteroids of E. meliloti have been identified.  相似文献   
5.
6.
Astragalus gombiformis is a desert symbiotic nitrogen-fixing legume of great nutritional value as fodder for camels and goats. However, there are no data published on the rhizobial bacteria that nodulate this wild legume in northern Africa. Thirty-four rhizobial bacteria were isolated from root nodules of A. gombifomis grown in sandy soils of the South-Eastern of Morocco. Twenty-five isolates were able to renodulate their original host and possessed a nodC gene copy. The phenotypic and genotypic characterizations carried out illustrated the diversity of the isolates. Phenotypic analysis showed that isolates used a great number of carbohydrates as sole carbon source. However, although they were isolated from arid sandy soils, the isolates do not tolerate drought stress applied in vitro. The phenotypic diversity corresponded mainly to the diversity in the use of some carbohydrates. The genetic analysis as assessed by repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) showed that the isolates clustered into 3 groups at a similarity coefficient of 81 %. The nearly-complete 16S rRNA gene sequence from a representative strain of each PCR-group showed they were closely related to members of the genus Mesorhizobium of the family Phyllobactericeae within the Alphaproteobacteria. Sequencing of the housekeeping genes atpD, glnII and recA, and their concatenated phylogenetic analysis, showed they are closely related to Mesorhizobium camelthorni. Sequencing of the symbiotic nodC gene from each strain revealed they had 83.53 % identity with the nodC sequence of the type strain M. camelthorni CCNWXJ 40-4T.  相似文献   
7.
Bradyrhizobium japonicum cytochrome c(550), encoded by cycA, has been previously suggested to play a role in denitrification, the respiratory reduction of nitrate to dinitrogen. However, the exact role of this cytochrome in the denitrification process is unknown. This study shows that cytochrome c(550) is involved in electron transfer to the copper-containing nitrite reductase of B. japonicum, as revealed by the inability of a cycA mutant strain to consume nitrite and, consequently, to grow under denitrifying conditions with nitrite as the electron acceptor. Mutation of cycA had no apparent effect on methylviologen-dependent nitrite reductase activity. However, succinate-dependent nitrite reduction was largely inhibited, suggesting that c(550) is the in vivo electron donor to copper-containing nitrite reductase. In addition, this study demonstrates that a cytochrome c(550) mutation has a negative effect on expression of the periplasmic nitrate reductase. This phenotype can be rescued by extending the growth period of the cells. A model is proposed whereby a mutation in cycA reduces expression of the cbb(3)-type oxidase, affecting oxygen consumption rate by the cells and consequently preventing maximal expression of the periplasmic nitrate reductase during the first days of the growth period.  相似文献   
8.
9.
Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.  相似文献   
10.
Host plant specificity was examined in symbiosis between Rhizobium strains isolated from legume-tree root nodules and herbaceous or woody legumes from which they were isolated. Strain GRH2 isolated from Acacia cyanophylla formed effective nodules on Acacia, Prosopis and Medicago sativa as well. Nitrogenase activity, measured as acetylene reduction, of strain GRH2 in symbiosis with Prosopis chilensis was the highest (P 0.05) among the tropical legumes studied and was similar to those found for other associations involving herbaceous legumes. Relative efficiency of nitrogenase varied from 0.3 to near 1 during the light time of the photoperiod. However no hydrogen uptake activity was detected by the amperometric method used. Rhizobium strains GRH3, GRH5 and GRH9 isolated from A. melanoxylon, P. chilensis and Sophora microphylla, respectively, also showed a very low host-range specificity. All isolates were infective and effective on at least one of the herbaceous legumes tested. These data demonstrate the lack of specificity of Rhizobium strains isolated from nitrogen-fixing tree root nodules and that these strains can form effective nodules on herbaceous legumes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号